monorepo
This commit is contained in:
35
PI5/generated/ej1_f1.dot
Normal file
35
PI5/generated/ej1_f1.dot
Normal file
@@ -0,0 +1,35 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(1,[[], [0]],[4, 4])" ];
|
||||
2 [ color="black" label="(2,[[0], [1]],[2, 2])" ];
|
||||
3 [ color="black" label="(0,[[], []],[4, 6])" ];
|
||||
4 [ color="black" label="(2,[[], [0]],[4, 4])" ];
|
||||
5 [ color="black" label="(3,[[0], [1]],[2, 2])" ];
|
||||
6 [ color="black" label="(1,[[], []],[4, 6])" ];
|
||||
7 [ color="black" label="(3,[[2], [0, 1]],[1, 0])" ];
|
||||
8 [ color="black" label="(4,[[2], [0, 1]],[1, 0])" ];
|
||||
9 [ color="black" label="(1,[[0], []],[2, 6])" ];
|
||||
10 [ color="black" label="(5,[[2], [0, 1]],[1, 0])" ];
|
||||
11 [ color="black" label="(2,[[0], []],[2, 6])" ];
|
||||
12 [ color="black" label="(2,[[1], [0]],[0, 4])" ];
|
||||
13 [ color="black" label="(3,[[1], [0]],[0, 4])" ];
|
||||
14 [ color="black" label="(4,[[2, 3], [0, 1]],[0, 0])" ];
|
||||
15 [ color="black" label="(5,[[2, 3], [0, 1]],[0, 0])" ];
|
||||
16 [ color="black" label="(2,[[], [0, 1]],[4, 0])" ];
|
||||
17 [ color="black" label="(3,[[], [0, 1]],[4, 0])" ];
|
||||
3 -> 1 [ color="red" label="1" ];
|
||||
9 -> 2 [ label="1" ];
|
||||
1 -> 4 [ label="-1" ];
|
||||
2 -> 5 [ label="-1" ];
|
||||
3 -> 6 [ label="-1" ];
|
||||
16 -> 7 [ color="red" label="0" ];
|
||||
7 -> 8 [ label="-1" ];
|
||||
3 -> 9 [ label="0" ];
|
||||
8 -> 10 [ label="-1" ];
|
||||
9 -> 11 [ label="-1" ];
|
||||
1 -> 12 [ label="0" ];
|
||||
12 -> 13 [ label="-1" ];
|
||||
7 -> 14 [ color="red" label="0" ];
|
||||
14 -> 15 [ color="red" label="-1" ];
|
||||
1 -> 16 [ color="red" label="1" ];
|
||||
16 -> 17 [ label="-1" ];
|
||||
}
|
||||
61
PI5/generated/ej1_f2.dot
Normal file
61
PI5/generated/ej1_f2.dot
Normal file
@@ -0,0 +1,61 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(3,[[], [0], [1]],[3, 0, 3])" ];
|
||||
2 [ color="black" label="(3,[[1], [0], []],[1, 0, 5])" ];
|
||||
3 [ color="black" label="(2,[[1], [0], []],[1, 0, 5])" ];
|
||||
4 [ color="black" label="(2,[[], [0], [1]],[3, 0, 3])" ];
|
||||
5 [ color="black" label="(4,[[], [0], [1, 2]],[3, 0, 0])" ];
|
||||
6 [ color="black" label="(4,[[1], [0], [2]],[1, 0, 2])" ];
|
||||
7 [ color="black" label="(4,[[2], [0], [1]],[0, 0, 3])" ];
|
||||
8 [ color="black" label="(5,[[], [0], [1, 2]],[3, 0, 0])" ];
|
||||
9 [ color="black" label="(3,[[1], [0], [2]],[1, 0, 2])" ];
|
||||
10 [ color="black" label="(3,[[2], [0], [1]],[0, 0, 3])" ];
|
||||
11 [ color="black" label="(3,[[], [0], [1, 2]],[3, 0, 0])" ];
|
||||
12 [ color="black" label="(3,[[1], [], [0]],[1, 4, 1])" ];
|
||||
13 [ color="black" label="(2,[[], [0], []],[3, 0, 5])" ];
|
||||
14 [ color="black" label="(1,[[], [0], []],[3, 0, 5])" ];
|
||||
15 [ color="black" label="(3,[[], [1], [0]],[3, 2, 1])" ];
|
||||
16 [ color="black" label="(5,[[1], [2], [0]],[1, 1, 1])" ];
|
||||
17 [ color="black" label="(4,[[1], [2], [0]],[1, 1, 1])" ];
|
||||
18 [ color="black" label="(6,[[3, 5], [0], [1, 2]],[0, 0, 0])" ];
|
||||
19 [ color="black" label="(0,[[], [], []],[3, 4, 5])" ];
|
||||
20 [ color="black" label="(3,[[1], [2], [0]],[1, 1, 1])" ];
|
||||
21 [ color="black" label="(1,[[], [], []],[3, 4, 5])" ];
|
||||
22 [ color="black" label="(2,[[], [1], [0]],[3, 2, 1])" ];
|
||||
23 [ color="black" label="(2,[[], [], [0]],[3, 4, 1])" ];
|
||||
24 [ color="black" label="(4,[[2], [1], [0]],[0, 2, 1])" ];
|
||||
25 [ color="black" label="(3,[[2], [1], [0]],[0, 2, 1])" ];
|
||||
26 [ color="black" label="(1,[[], [], [0]],[3, 4, 1])" ];
|
||||
27 [ color="black" label="(4,[[3], [0], [1, 2]],[2, 0, 0])" ];
|
||||
28 [ color="black" label="(2,[[1], [], [0]],[1, 4, 1])" ];
|
||||
29 [ color="black" label="(5,[[3], [0], [1, 2]],[2, 0, 0])" ];
|
||||
30 [ color="black" label="(6,[[3], [0], [1, 2]],[2, 0, 0])" ];
|
||||
4 -> 1 [ label="-1" ];
|
||||
3 -> 2 [ label="-1" ];
|
||||
14 -> 3 [ label="0" ];
|
||||
14 -> 4 [ color="red" label="2" ];
|
||||
11 -> 5 [ label="-1" ];
|
||||
9 -> 6 [ label="-1" ];
|
||||
10 -> 7 [ label="-1" ];
|
||||
5 -> 8 [ label="-1" ];
|
||||
3 -> 9 [ label="2" ];
|
||||
4 -> 10 [ label="0" ];
|
||||
4 -> 11 [ color="red" label="2" ];
|
||||
28 -> 12 [ label="-1" ];
|
||||
14 -> 13 [ label="-1" ];
|
||||
19 -> 14 [ color="red" label="1" ];
|
||||
22 -> 15 [ label="-1" ];
|
||||
17 -> 16 [ label="-1" ];
|
||||
20 -> 17 [ label="-1" ];
|
||||
29 -> 18 [ color="red" label="0" ];
|
||||
28 -> 20 [ label="1" ];
|
||||
19 -> 21 [ label="-1" ];
|
||||
26 -> 22 [ label="1" ];
|
||||
26 -> 23 [ label="-1" ];
|
||||
25 -> 24 [ label="-1" ];
|
||||
22 -> 25 [ label="0" ];
|
||||
19 -> 26 [ label="2" ];
|
||||
11 -> 27 [ color="red" label="0" ];
|
||||
26 -> 28 [ label="0" ];
|
||||
27 -> 29 [ color="red" label="-1" ];
|
||||
29 -> 30 [ label="-1" ];
|
||||
}
|
||||
749
PI5/generated/ej1_f3.dot
Normal file
749
PI5/generated/ej1_f3.dot
Normal file
@@ -0,0 +1,749 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(7,[[5], [1, 3], [6], [2]],[5, 0, 0, 5])" ];
|
||||
2 [ color="black" label="(4,[[0], [], [], [1]],[4, 5, 2, 4])" ];
|
||||
3 [ color="black" label="(4,[[2], [], [], [1]],[7, 5, 2, 4])" ];
|
||||
4 [ color="black" label="(8,[[2, 4], [5], [6], [1]],[1, 0, 0, 4])" ];
|
||||
5 [ color="black" label="(7,[[2, 4], [], [3], [1]],[1, 5, 1, 4])" ];
|
||||
6 [ color="black" label="(6,[[5], [1, 3], [], [2]],[5, 0, 2, 5])" ];
|
||||
7 [ color="black" label="(7,[[2, 4], [5], [], [1]],[1, 0, 2, 4])" ];
|
||||
8 [ color="black" label="(8,[[4], [1, 3], [6], [2]],[4, 0, 0, 5])" ];
|
||||
9 [ color="black" label="(5,[[4], [1], [3], [0]],[4, 1, 1, 2])" ];
|
||||
10 [ color="black" label="(4,[[1], [2], [], [3]],[6, 2, 2, 7])" ];
|
||||
11 [ color="black" label="(5,[[2, 4], [1, 3], [], []],[1, 0, 2, 8])" ];
|
||||
12 [ color="black" label="(6,[[4], [2], [3], [1]],[4, 2, 1, 4])" ];
|
||||
13 [ color="black" label="(6,[[4], [1], [3], [2]],[4, 1, 1, 5])" ];
|
||||
14 [ color="black" label="(8,[[5, 7], [1, 3], [6], [2]],[0, 0, 0, 5])" ];
|
||||
15 [ color="black" label="(4,[[], [], [], [0]],[10, 5, 2, 2])" ];
|
||||
16 [ color="black" label="(6,[[2], [1, 3], [], [0]],[7, 0, 2, 2])" ];
|
||||
17 [ color="black" label="(7,[[4], [1, 3], [], [2]],[4, 0, 2, 5])" ];
|
||||
18 [ color="black" label="(7,[[2, 4], [6], [], [1, 3]],[1, 3, 2, 3])" ];
|
||||
19 [ color="black" label="(6,[[4], [1, 3], [], [0]],[4, 0, 2, 2])" ];
|
||||
20 [ color="black" label="(5,[[2, 4], [1, 3], [], [0]],[1, 0, 2, 2])" ];
|
||||
21 [ color="black" label="(4,[[], [2], [], [1, 3]],[10, 2, 2, 3])" ];
|
||||
22 [ color="black" label="(6,[[2], [], [], [1, 3]],[7, 5, 2, 3])" ];
|
||||
23 [ color="black" label="(6,[[0], [2], [3], [1]],[4, 2, 1, 4])" ];
|
||||
24 [ color="black" label="(6,[[0], [1], [3], [2]],[4, 1, 1, 5])" ];
|
||||
25 [ color="black" label="(4,[[0], [], [], [2]],[4, 5, 2, 5])" ];
|
||||
26 [ color="black" label="(6,[[0], [1, 3], [], []],[4, 0, 2, 8])" ];
|
||||
27 [ color="black" label="(8,[[2], [1, 3], [6], [0]],[7, 0, 0, 2])" ];
|
||||
28 [ color="black" label="(4,[[2], [], [], [0]],[7, 5, 2, 2])" ];
|
||||
29 [ color="black" label="(7,[[0], [1], [3], [4]],[4, 1, 1, 2])" ];
|
||||
30 [ color="black" label="(7,[[0], [1, 3], [], [2]],[4, 0, 2, 5])" ];
|
||||
31 [ color="black" label="(6,[[2], [1], [3], [0]],[7, 1, 1, 2])" ];
|
||||
32 [ color="black" label="(5,[[0], [], [], [1, 3]],[4, 5, 2, 3])" ];
|
||||
33 [ color="black" label="(6,[[2, 4], [], [3], [0]],[1, 5, 1, 2])" ];
|
||||
34 [ color="black" label="(3,[[0], [], [], []],[4, 5, 2, 8])" ];
|
||||
35 [ color="black" label="(5,[[0], [1], [3], []],[4, 1, 1, 8])" ];
|
||||
36 [ color="black" label="(8,[[0], [1, 3], [6], [2]],[4, 0, 0, 5])" ];
|
||||
37 [ color="black" label="(6,[[2, 4], [1], [3], [5]],[1, 1, 1, 3])" ];
|
||||
38 [ color="black" label="(8,[[2, 4], [1, 3], [6], [5]],[1, 0, 0, 3])" ];
|
||||
39 [ color="black" label="(6,[[4], [2], [3], [0]],[4, 2, 1, 2])" ];
|
||||
40 [ color="black" label="(5,[[1, 3], [], [], [0]],[5, 5, 2, 2])" ];
|
||||
41 [ color="black" label="(9,[[2, 4], [5], [6], [1, 3]],[1, 0, 0, 3])" ];
|
||||
42 [ color="black" label="(5,[[1], [], [], [2]],[6, 5, 2, 5])" ];
|
||||
43 [ color="black" label="(5,[[3], [], [], [0]],[9, 5, 2, 2])" ];
|
||||
44 [ color="black" label="(6,[[1, 3], [], [], [2]],[5, 5, 2, 5])" ];
|
||||
45 [ color="black" label="(4,[[1], [], [], [0]],[6, 5, 2, 2])" ];
|
||||
46 [ color="black" label="(6,[[1], [5], [3], [2]],[6, 0, 1, 5])" ];
|
||||
47 [ color="black" label="(7,[[2, 4], [1, 3], [], [5]],[1, 0, 2, 3])" ];
|
||||
48 [ color="black" label="(5,[[1, 3], [2], [], [4]],[5, 2, 2, 2])" ];
|
||||
49 [ color="black" label="(8,[[2, 4], [5], [], [1, 3]],[1, 0, 2, 3])" ];
|
||||
50 [ color="black" label="(2,[[0], [1], [], []],[4, 1, 2, 8])" ];
|
||||
51 [ color="black" label="(5,[[0], [], [], [1]],[4, 5, 2, 4])" ];
|
||||
52 [ color="black" label="(5,[[2], [], [], [1]],[7, 5, 2, 4])" ];
|
||||
53 [ color="black" label="(3,[[0], [1], [], [2]],[4, 1, 2, 5])" ];
|
||||
54 [ color="black" label="(3,[[0], [2], [], [1]],[4, 2, 2, 4])" ];
|
||||
55 [ color="black" label="(6,[[2], [5], [3], [1]],[7, 0, 1, 4])" ];
|
||||
56 [ color="black" label="(4,[[0], [2], [], [3]],[4, 2, 2, 7])" ];
|
||||
57 [ color="black" label="(3,[[1], [2], [], [0]],[6, 2, 2, 2])" ];
|
||||
58 [ color="black" label="(7,[[2, 4], [5], [6], [1]],[1, 0, 0, 4])" ];
|
||||
59 [ color="black" label="(6,[[2, 4], [], [3], [1]],[1, 5, 1, 4])" ];
|
||||
60 [ color="black" label="(8,[[2, 4], [3], [6], [1]],[1, 4, 0, 4])" ];
|
||||
61 [ color="black" label="(5,[[], [2], [], [1, 3]],[10, 2, 2, 3])" ];
|
||||
62 [ color="black" label="(3,[[], [2], [], [0]],[10, 2, 2, 2])" ];
|
||||
63 [ color="black" label="(9,[[2, 4], [1, 3], [6], [0, 8]],[1, 0, 0, 0])" ];
|
||||
64 [ color="black" label="(7,[[4], [2], [3], [1]],[4, 2, 1, 4])" ];
|
||||
65 [ color="black" label="(4,[[1], [3], [], [2]],[6, 4, 2, 5])" ];
|
||||
66 [ color="black" label="(9,[[5, 7], [1, 3], [6], [2]],[0, 0, 0, 5])" ];
|
||||
67 [ color="black" label="(5,[[1], [2], [], [3]],[6, 2, 2, 7])" ];
|
||||
68 [ color="black" label="(6,[[4], [1], [3], [0]],[4, 1, 1, 2])" ];
|
||||
69 [ color="black" label="(7,[[2, 4], [3], [], [1]],[1, 4, 2, 4])" ];
|
||||
70 [ color="black" label="(4,[[0], [2], [], [1, 3]],[4, 2, 2, 3])" ];
|
||||
71 [ color="black" label="(7,[[2], [1, 3], [], [0]],[7, 0, 2, 2])" ];
|
||||
72 [ color="black" label="(6,[[2, 4], [5], [], [1]],[1, 0, 2, 4])" ];
|
||||
73 [ color="black" label="(6,[[0], [], [], [1, 3]],[4, 5, 2, 3])" ];
|
||||
74 [ color="black" label="(4,[[2], [1], [], [3]],[7, 1, 2, 7])" ];
|
||||
75 [ color="black" label="(6,[[0], [1], [3], []],[4, 1, 1, 8])" ];
|
||||
76 [ color="black" label="(8,[[1, 3], [5], [6], [0]],[5, 0, 0, 2])" ];
|
||||
77 [ color="black" label="(5,[[2, 4], [], [3], [0]],[1, 5, 1, 2])" ];
|
||||
78 [ color="black" label="(4,[[3], [2], [], [1]],[9, 2, 2, 4])" ];
|
||||
79 [ color="black" label="(7,[[0], [1], [3], [2]],[4, 1, 1, 5])" ];
|
||||
80 [ color="black" label="(4,[[3], [1], [], [2]],[9, 1, 2, 5])" ];
|
||||
81 [ color="black" label="(3,[[1], [2], [], []],[6, 2, 2, 8])" ];
|
||||
82 [ color="black" label="(3,[[], [2], [], [1]],[10, 2, 2, 4])" ];
|
||||
83 [ color="black" label="(6,[[2, 4], [1], [], [0]],[1, 1, 2, 2])" ];
|
||||
84 [ color="black" label="(7,[[1], [5], [3], [2]],[6, 0, 1, 5])" ];
|
||||
85 [ color="black" label="(6,[[2, 4], [3], [], [0]],[1, 4, 2, 2])" ];
|
||||
86 [ color="black" label="(7,[[2, 4], [1, 3], [6], [5]],[1, 0, 0, 3])" ];
|
||||
87 [ color="black" label="(7,[[4], [2], [3], [0]],[4, 2, 1, 2])" ];
|
||||
88 [ color="black" label="(6,[[1], [5], [3], [0]],[6, 0, 1, 2])" ];
|
||||
89 [ color="black" label="(5,[[1], [], [], [0]],[6, 5, 2, 2])" ];
|
||||
90 [ color="black" label="(4,[[1, 3], [2], [], []],[5, 2, 2, 8])" ];
|
||||
91 [ color="black" label="(8,[[2, 4], [5], [6], [1, 3]],[1, 0, 0, 3])" ];
|
||||
92 [ color="black" label="(6,[[1, 3], [], [], [0]],[5, 5, 2, 2])" ];
|
||||
93 [ color="black" label="(2,[[], [1], [], []],[10, 1, 2, 8])" ];
|
||||
94 [ color="black" label="(6,[[2, 4], [1, 3], [], [5]],[1, 0, 2, 3])" ];
|
||||
95 [ color="black" label="(4,[[1, 3], [2], [], [0]],[5, 2, 2, 2])" ];
|
||||
96 [ color="black" label="(3,[[], [1], [], [2]],[10, 1, 2, 5])" ];
|
||||
97 [ color="black" label="(7,[[2, 4], [5], [], [1, 3]],[1, 0, 2, 3])" ];
|
||||
98 [ color="black" label="(2,[[], [1], [], [0]],[10, 1, 2, 2])" ];
|
||||
99 [ color="black" label="(6,[[1, 3], [2], [], [4]],[5, 2, 2, 2])" ];
|
||||
100 [ color="black" label="(3,[[0], [1], [], []],[4, 1, 2, 8])" ];
|
||||
101 [ color="black" label="(4,[[0], [1], [], [2]],[4, 1, 2, 5])" ];
|
||||
102 [ color="black" label="(4,[[0], [2], [], [1]],[4, 2, 2, 4])" ];
|
||||
103 [ color="black" label="(4,[[0], [3], [], [2]],[4, 4, 2, 5])" ];
|
||||
104 [ color="black" label="(5,[[0], [2], [], [3]],[4, 2, 2, 7])" ];
|
||||
105 [ color="black" label="(3,[[2], [1], [], []],[7, 1, 2, 8])" ];
|
||||
106 [ color="black" label="(7,[[2], [5], [3], [1]],[7, 0, 1, 4])" ];
|
||||
107 [ color="black" label="(4,[[1], [2], [], [0]],[6, 2, 2, 2])" ];
|
||||
108 [ color="black" label="(4,[[3], [2], [], [0]],[9, 2, 2, 2])" ];
|
||||
109 [ color="black" label="(5,[[2, 4], [], [3], [1]],[1, 5, 1, 4])" ];
|
||||
110 [ color="black" label="(7,[[2, 4], [3], [6], [1]],[1, 4, 0, 4])" ];
|
||||
111 [ color="black" label="(8,[[2, 4], [1], [6], [3]],[1, 1, 0, 7])" ];
|
||||
112 [ color="black" label="(5,[[3], [1], [], [2]],[9, 1, 2, 5])" ];
|
||||
113 [ color="black" label="(6,[[], [2], [], [1, 3]],[10, 2, 2, 3])" ];
|
||||
114 [ color="black" label="(4,[[], [2], [], [0]],[10, 2, 2, 2])" ];
|
||||
115 [ color="black" label="(5,[[3], [2], [], [1]],[9, 2, 2, 4])" ];
|
||||
116 [ color="black" label="(6,[[2, 4], [3], [], [1]],[1, 4, 2, 4])" ];
|
||||
117 [ color="black" label="(4,[[1], [3], [], [0]],[6, 4, 2, 2])" ];
|
||||
118 [ color="black" label="(8,[[2, 4], [6], [3], [1]],[1, 3, 1, 4])" ];
|
||||
119 [ color="black" label="(7,[[2, 4], [1], [], [3]],[1, 1, 2, 7])" ];
|
||||
120 [ color="black" label="(7,[[4], [1], [3], [0]],[4, 1, 1, 2])" ];
|
||||
121 [ color="black" label="(5,[[1], [3], [], [2]],[6, 4, 2, 5])" ];
|
||||
122 [ color="black" label="(6,[[1], [2], [], [3]],[6, 2, 2, 7])" ];
|
||||
123 [ color="black" label="(4,[[1], [], [3], [2]],[6, 5, 1, 5])" ];
|
||||
124 [ color="black" label="(6,[[4], [5], [3], [0]],[4, 0, 1, 2])" ];
|
||||
125 [ color="black" label="(5,[[0], [2], [], [1, 3]],[4, 2, 2, 3])" ];
|
||||
126 [ color="black" label="(5,[[4], [2], [], [1, 3]],[4, 2, 2, 3])" ];
|
||||
127 [ color="black" label="(3,[[0], [2], [], []],[4, 2, 2, 8])" ];
|
||||
128 [ color="black" label="(5,[[2], [1], [], [3]],[7, 1, 2, 7])" ];
|
||||
129 [ color="black" label="(4,[[2], [3], [], [1]],[7, 4, 2, 4])" ];
|
||||
130 [ color="black" label="(4,[[0], [1], [], [3]],[4, 1, 2, 7])" ];
|
||||
131 [ color="black" label="(7,[[1, 3], [5], [6], [0]],[5, 0, 0, 2])" ];
|
||||
132 [ color="black" label="(8,[[1, 3], [5], [6], [2]],[5, 0, 0, 5])" ];
|
||||
133 [ color="black" label="(4,[[3], [1], [], [0]],[9, 1, 2, 2])" ];
|
||||
134 [ color="black" label="(4,[[1], [2], [], []],[6, 2, 2, 8])" ];
|
||||
135 [ color="black" label="(5,[[2, 4], [1], [], [0]],[1, 1, 2, 2])" ];
|
||||
136 [ color="black" label="(5,[[2, 4], [3], [], [0]],[1, 4, 2, 2])" ];
|
||||
137 [ color="black" label="(4,[[], [1], [], [2]],[10, 1, 2, 5])" ];
|
||||
138 [ color="black" label="(4,[[], [2], [], [1]],[10, 2, 2, 4])" ];
|
||||
139 [ color="black" label="(5,[[1, 3], [2], [], []],[5, 2, 2, 8])" ];
|
||||
140 [ color="black" label="(7,[[2, 4], [5], [6], [1, 3]],[1, 0, 0, 3])" ];
|
||||
141 [ color="black" label="(7,[[1], [5], [3], [0]],[6, 0, 1, 2])" ];
|
||||
142 [ color="black" label="(3,[[], [1], [], []],[10, 1, 2, 8])" ];
|
||||
143 [ color="black" label="(6,[[2, 4], [5], [], [1, 3]],[1, 0, 2, 3])" ];
|
||||
144 [ color="black" label="(5,[[1, 3], [2], [], [0]],[5, 2, 2, 2])" ];
|
||||
145 [ color="black" label="(3,[[2], [1], [], [0]],[7, 1, 2, 2])" ];
|
||||
146 [ color="black" label="(3,[[], [1], [], [0]],[10, 1, 2, 2])" ];
|
||||
147 [ color="black" label="(8,[[5], [2], [6], [1, 3]],[5, 2, 0, 3])" ];
|
||||
148 [ color="black" label="(4,[[2], [3], [], [0]],[7, 4, 2, 2])" ];
|
||||
149 [ color="black" label="(4,[[0], [1], [], []],[4, 1, 2, 8])" ];
|
||||
150 [ color="black" label="(4,[[], [], [3], [0]],[10, 5, 1, 2])" ];
|
||||
151 [ color="black" label="(5,[[0], [3], [], [2]],[4, 4, 2, 5])" ];
|
||||
152 [ color="black" label="(5,[[0], [2], [], [1]],[4, 2, 2, 4])" ];
|
||||
153 [ color="black" label="(4,[[2], [1], [], []],[7, 1, 2, 8])" ];
|
||||
154 [ color="black" label="(5,[[0], [1], [], [2]],[4, 1, 2, 5])" ];
|
||||
155 [ color="black" label="(7,[[5], [2], [], [1, 3]],[5, 2, 2, 3])" ];
|
||||
156 [ color="black" label="(5,[[3], [2], [], [0]],[9, 2, 2, 2])" ];
|
||||
157 [ color="black" label="(4,[[0], [], [3], [2]],[4, 5, 1, 5])" ];
|
||||
158 [ color="black" label="(7,[[2, 4], [1], [6], [3]],[1, 1, 0, 7])" ];
|
||||
159 [ color="black" label="(6,[[3], [1], [], [2]],[9, 1, 2, 5])" ];
|
||||
160 [ color="black" label="(7,[[4], [2], [6], [1, 3]],[4, 2, 0, 3])" ];
|
||||
161 [ color="black" label="(6,[[3], [2], [], [1]],[9, 2, 2, 4])" ];
|
||||
162 [ color="black" label="(5,[[], [2], [], [0]],[10, 2, 2, 2])" ];
|
||||
163 [ color="black" label="(5,[[1], [3], [], [0]],[6, 4, 2, 2])" ];
|
||||
164 [ color="black" label="(7,[[2, 4], [6], [3], [1]],[1, 3, 1, 4])" ];
|
||||
165 [ color="black" label="(6,[[2, 4], [1], [], [3]],[1, 1, 2, 7])" ];
|
||||
166 [ color="black" label="(5,[[2, 4], [3], [], [1]],[1, 4, 2, 4])" ];
|
||||
167 [ color="black" label="(6,[[1], [3], [], [2]],[6, 4, 2, 5])" ];
|
||||
168 [ color="black" label="(5,[[1], [], [3], [2]],[6, 5, 1, 5])" ];
|
||||
169 [ color="black" label="(7,[[4], [5], [3], [0]],[4, 0, 1, 2])" ];
|
||||
170 [ color="black" label="(6,[[0], [2], [], [1, 3]],[4, 2, 2, 3])" ];
|
||||
171 [ color="black" label="(4,[[1], [], [3], [0]],[6, 5, 1, 2])" ];
|
||||
172 [ color="black" label="(6,[[4], [2], [], [1, 3]],[4, 2, 2, 3])" ];
|
||||
173 [ color="black" label="(5,[[2], [3], [], [1]],[7, 4, 2, 4])" ];
|
||||
174 [ color="black" label="(6,[[2], [1], [], [3]],[7, 1, 2, 7])" ];
|
||||
175 [ color="black" label="(4,[[0], [2], [], []],[4, 2, 2, 8])" ];
|
||||
176 [ color="black" label="(4,[[0], [3], [], [1]],[4, 4, 2, 4])" ];
|
||||
177 [ color="black" label="(5,[[0], [1], [], [3]],[4, 1, 2, 7])" ];
|
||||
178 [ color="black" label="(7,[[1, 3], [5], [6], [2]],[5, 0, 0, 5])" ];
|
||||
179 [ color="black" label="(4,[[2], [], [3], [1]],[7, 5, 1, 4])" ];
|
||||
180 [ color="black" label="(5,[[3], [1], [], [0]],[9, 1, 2, 2])" ];
|
||||
181 [ color="black" label="(4,[[], [1], [], [0]],[10, 1, 2, 2])" ];
|
||||
182 [ color="black" label="(4,[[], [3], [], [0]],[10, 4, 2, 2])" ];
|
||||
183 [ color="black" label="(5,[[1], [2], [], [0]],[6, 2, 2, 2])" ];
|
||||
184 [ color="black" label="(5,[[], [2], [], [1]],[10, 2, 2, 4])" ];
|
||||
185 [ color="black" label="(8,[[2, 4], [5], [3], [1]],[1, 0, 1, 4])" ];
|
||||
186 [ color="black" label="(9,[[2, 4], [7], [6], [1, 3]],[1, 0, 0, 3])" ];
|
||||
187 [ color="black" label="(5,[[0], [1], [], [4]],[4, 1, 2, 2])" ];
|
||||
188 [ color="black" label="(5,[[4], [2], [], [1]],[4, 2, 2, 4])" ];
|
||||
189 [ color="black" label="(6,[[1, 3], [2], [], [0]],[5, 2, 2, 2])" ];
|
||||
190 [ color="black" label="(4,[[2], [1], [], [0]],[7, 1, 2, 2])" ];
|
||||
191 [ color="black" label="(7,[[5], [2], [6], [1, 3]],[5, 2, 0, 3])" ];
|
||||
192 [ color="black" label="(5,[[2], [1], [], [0]],[7, 1, 2, 2])" ];
|
||||
193 [ color="black" label="(5,[[2], [3], [], [0]],[7, 4, 2, 2])" ];
|
||||
194 [ color="black" label="(5,[[0], [1], [], []],[4, 1, 2, 8])" ];
|
||||
195 [ color="black" label="(5,[[], [], [3], [0]],[10, 5, 1, 2])" ];
|
||||
196 [ color="black" label="(7,[[0], [5], [6], [1, 3]],[4, 0, 0, 3])" ];
|
||||
197 [ color="black" label="(6,[[0], [1], [], [2]],[4, 1, 2, 5])" ];
|
||||
198 [ color="black" label="(7,[[2], [5], [6], [1, 3]],[7, 0, 0, 3])" ];
|
||||
199 [ color="black" label="(8,[[2, 4], [1], [3], [0]],[1, 1, 1, 2])" ];
|
||||
200 [ color="black" label="(4,[[2], [], [3], [0]],[7, 5, 1, 2])" ];
|
||||
201 [ color="black" label="(5,[[0], [], [3], [2]],[4, 5, 1, 5])" ];
|
||||
202 [ color="black" label="(6,[[5], [2], [], [1, 3]],[5, 2, 2, 3])" ];
|
||||
203 [ color="black" label="(7,[[2, 4], [5], [3], [0]],[1, 0, 1, 2])" ];
|
||||
204 [ color="black" label="(8,[[4], [2], [6], [1, 3]],[4, 2, 0, 3])" ];
|
||||
205 [ color="black" label="(5,[[2, 4], [1], [], [3]],[1, 1, 2, 7])" ];
|
||||
206 [ color="black" label="(5,[[1], [2], [3], [4]],[6, 2, 1, 2])" ];
|
||||
207 [ color="black" label="(8,[[5, 7], [2], [6], [1, 3]],[0, 2, 0, 3])" ];
|
||||
208 [ color="black" label="(6,[[1], [3], [], [0]],[6, 4, 2, 2])" ];
|
||||
209 [ color="black" label="(6,[[1], [], [3], [2]],[6, 5, 1, 5])" ];
|
||||
210 [ color="black" label="(5,[[1], [], [3], [0]],[6, 5, 1, 2])" ];
|
||||
211 [ color="black" label="(7,[[4], [2], [], [1, 3]],[4, 2, 2, 3])" ];
|
||||
212 [ color="black" label="(5,[[4], [2], [], [0]],[4, 2, 2, 2])" ];
|
||||
213 [ color="black" label="(4,[[], [1, 3], [], [2]],[10, 0, 2, 5])" ];
|
||||
214 [ color="black" label="(6,[[1, 3], [5], [], [2]],[5, 0, 2, 5])" ];
|
||||
215 [ color="black" label="(6,[[2], [3], [], [1]],[7, 4, 2, 4])" ];
|
||||
216 [ color="black" label="(6,[[0], [1], [], [3]],[4, 1, 2, 7])" ];
|
||||
217 [ color="black" label="(5,[[0], [3], [], [1]],[4, 4, 2, 4])" ];
|
||||
218 [ color="black" label="(0,[[], [], [], []],[10, 5, 2, 8])" ];
|
||||
219 [ color="black" label="(5,[[2], [], [3], [1]],[7, 5, 1, 4])" ];
|
||||
220 [ color="black" label="(6,[[2, 4], [], [], [1]],[1, 5, 2, 4])" ];
|
||||
221 [ color="black" label="(4,[[0], [], [3], [1]],[4, 5, 1, 4])" ];
|
||||
222 [ color="black" label="(8,[[2, 4], [7], [6], [1, 3]],[1, 0, 0, 3])" ];
|
||||
223 [ color="black" label="(5,[[], [3], [], [0]],[10, 4, 2, 2])" ];
|
||||
224 [ color="black" label="(6,[[1], [2], [], [0]],[6, 2, 2, 2])" ];
|
||||
225 [ color="black" label="(7,[[2, 4], [5], [3], [1]],[1, 0, 1, 4])" ];
|
||||
226 [ color="black" label="(5,[[4], [3], [], [0]],[4, 4, 2, 2])" ];
|
||||
227 [ color="black" label="(6,[[4], [2], [], [1]],[4, 2, 2, 4])" ];
|
||||
228 [ color="black" label="(6,[[0], [1], [], [4]],[4, 1, 2, 2])" ];
|
||||
229 [ color="black" label="(6,[[2], [5], [], [1, 3]],[7, 0, 2, 3])" ];
|
||||
230 [ color="black" label="(6,[[2], [1], [], [0]],[7, 1, 2, 2])" ];
|
||||
231 [ color="black" label="(8,[[0], [5], [6], [1, 3]],[4, 0, 0, 3])" ];
|
||||
232 [ color="black" label="(5,[[0], [2], [3], [4]],[4, 2, 1, 2])" ];
|
||||
233 [ color="black" label="(7,[[0], [1, 3], [6], [5]],[4, 0, 0, 3])" ];
|
||||
234 [ color="black" label="(8,[[2], [5], [6], [1, 3]],[7, 0, 0, 3])" ];
|
||||
235 [ color="black" label="(7,[[2, 4], [1], [3], [0]],[1, 1, 1, 2])" ];
|
||||
236 [ color="black" label="(5,[[2], [], [3], [0]],[7, 5, 1, 2])" ];
|
||||
237 [ color="black" label="(9,[[2, 4], [1, 3], [6], [0]],[1, 0, 0, 2])" ];
|
||||
238 [ color="black" label="(8,[[2, 4], [], [6], [1, 3]],[1, 5, 0, 3])" ];
|
||||
239 [ color="black" label="(6,[[2, 4], [5], [3], [0]],[1, 0, 1, 2])" ];
|
||||
240 [ color="black" label="(5,[[], [1, 3], [], [2]],[10, 0, 2, 5])" ];
|
||||
241 [ color="black" label="(6,[[1], [2], [3], [4]],[6, 2, 1, 2])" ];
|
||||
242 [ color="black" label="(7,[[2, 4], [], [], [1, 3]],[1, 5, 2, 3])" ];
|
||||
243 [ color="black" label="(4,[[1], [2], [3], [0]],[6, 2, 1, 2])" ];
|
||||
244 [ color="black" label="(4,[[], [1], [3], [2]],[10, 1, 1, 5])" ];
|
||||
245 [ color="black" label="(4,[[], [2], [3], [1]],[10, 2, 1, 4])" ];
|
||||
246 [ color="black" label="(9,[[5, 7], [2], [6], [1, 3]],[0, 2, 0, 3])" ];
|
||||
247 [ color="black" label="(6,[[4], [2], [], [0]],[4, 2, 2, 2])" ];
|
||||
248 [ color="black" label="(6,[[1], [], [3], [0]],[6, 5, 1, 2])" ];
|
||||
249 [ color="black" label="(1,[[], [], [], [0]],[10, 5, 2, 2])" ];
|
||||
250 [ color="black" label="(4,[[0], [1, 3], [], [2]],[4, 0, 2, 5])" ];
|
||||
251 [ color="black" label="(5,[[2], [1, 3], [], [4]],[7, 0, 2, 2])" ];
|
||||
252 [ color="black" label="(4,[[1], [2], [3], []],[6, 2, 1, 8])" ];
|
||||
253 [ color="black" label="(7,[[1, 3], [5], [], [2]],[5, 0, 2, 5])" ];
|
||||
254 [ color="black" label="(4,[[], [1, 3], [], [0]],[10, 0, 2, 2])" ];
|
||||
255 [ color="black" label="(5,[[0], [1, 3], [], [4]],[4, 0, 2, 2])" ];
|
||||
256 [ color="black" label="(6,[[1, 3], [5], [], [0]],[5, 0, 2, 2])" ];
|
||||
257 [ color="black" label="(5,[[2], [1], [3], [4]],[7, 1, 1, 2])" ];
|
||||
258 [ color="black" label="(1,[[], [], [], []],[10, 5, 2, 8])" ];
|
||||
259 [ color="black" label="(4,[[2], [1, 3], [], []],[7, 0, 2, 8])" ];
|
||||
260 [ color="black" label="(7,[[5], [2], [3], [0]],[5, 2, 1, 2])" ];
|
||||
261 [ color="black" label="(5,[[2, 4], [], [], [1]],[1, 5, 2, 4])" ];
|
||||
262 [ color="black" label="(6,[[2], [], [3], [1]],[7, 5, 1, 4])" ];
|
||||
263 [ color="black" label="(5,[[0], [], [3], [1]],[4, 5, 1, 4])" ];
|
||||
264 [ color="black" label="(6,[[2, 4], [5], [3], [1]],[1, 0, 1, 4])" ];
|
||||
265 [ color="black" label="(5,[[4], [], [3], [0]],[4, 5, 1, 2])" ];
|
||||
266 [ color="black" label="(6,[[4], [3], [], [0]],[4, 4, 2, 2])" ];
|
||||
267 [ color="black" label="(6,[[0], [5], [], [1, 3]],[4, 0, 2, 3])" ];
|
||||
268 [ color="black" label="(7,[[2], [5], [], [1, 3]],[7, 0, 2, 3])" ];
|
||||
269 [ color="black" label="(2,[[0], [], [], [1]],[4, 5, 2, 4])" ];
|
||||
270 [ color="black" label="(7,[[5], [2], [3], [1]],[5, 2, 1, 4])" ];
|
||||
271 [ color="black" label="(7,[[5], [1], [3], [2]],[5, 1, 1, 5])" ];
|
||||
272 [ color="black" label="(8,[[0], [1, 3], [6], [5]],[4, 0, 0, 3])" ];
|
||||
273 [ color="black" label="(6,[[0], [2], [3], [4]],[4, 2, 1, 2])" ];
|
||||
274 [ color="black" label="(6,[[0], [1], [3], [5]],[4, 1, 1, 3])" ];
|
||||
275 [ color="black" label="(8,[[2, 4], [1, 3], [6], [0]],[1, 0, 0, 2])" ];
|
||||
276 [ color="black" label="(6,[[2, 4], [1], [3], []],[1, 1, 1, 8])" ];
|
||||
277 [ color="black" label="(7,[[2, 4], [], [6], [1, 3]],[1, 5, 0, 3])" ];
|
||||
278 [ color="black" label="(4,[[0], [2], [3], []],[4, 2, 1, 8])" ];
|
||||
279 [ color="black" label="(5,[[1], [2], [3], [0]],[6, 2, 1, 2])" ];
|
||||
280 [ color="black" label="(6,[[], [1, 3], [], [2]],[10, 0, 2, 5])" ];
|
||||
281 [ color="black" label="(7,[[2, 4], [1, 3], [], [0]],[1, 0, 2, 2])" ];
|
||||
282 [ color="black" label="(6,[[2, 4], [], [], [1, 3]],[1, 5, 2, 3])" ];
|
||||
283 [ color="black" label="(4,[[], [1], [3], [0]],[10, 1, 1, 2])" ];
|
||||
284 [ color="black" label="(6,[[2, 4], [1], [3], [0]],[1, 1, 1, 2])" ];
|
||||
285 [ color="black" label="(5,[[0], [1, 3], [], [2]],[4, 0, 2, 5])" ];
|
||||
286 [ color="black" label="(2,[[], [], [], [0]],[10, 5, 2, 2])" ];
|
||||
287 [ color="black" label="(6,[[0], [1, 3], [], [4]],[4, 0, 2, 2])" ];
|
||||
288 [ color="black" label="(6,[[2], [1, 3], [], [4]],[7, 0, 2, 2])" ];
|
||||
289 [ color="black" label="(5,[[4], [1, 3], [], [2]],[4, 0, 2, 5])" ];
|
||||
290 [ color="black" label="(5,[[], [1, 3], [], [0]],[10, 0, 2, 2])" ];
|
||||
291 [ color="black" label="(5,[[1], [2], [3], []],[6, 2, 1, 8])" ];
|
||||
292 [ color="black" label="(7,[[1, 3], [5], [], [0]],[5, 0, 2, 2])" ];
|
||||
293 [ color="black" label="(4,[[2], [1, 3], [], [0]],[7, 0, 2, 2])" ];
|
||||
294 [ color="black" label="(4,[[0], [1], [3], [2]],[4, 1, 1, 5])" ];
|
||||
295 [ color="black" label="(4,[[0], [2], [3], [1]],[4, 2, 1, 4])" ];
|
||||
296 [ color="black" label="(4,[[2], [1], [3], [0]],[7, 1, 1, 2])" ];
|
||||
297 [ color="black" label="(6,[[2], [1], [3], [4]],[7, 1, 1, 2])" ];
|
||||
298 [ color="black" label="(4,[[2], [], [], [1, 3]],[7, 5, 2, 3])" ];
|
||||
299 [ color="black" label="(2,[[], [], [], []],[10, 5, 2, 8])" ];
|
||||
300 [ color="black" label="(4,[[0], [1, 3], [], []],[4, 0, 2, 8])" ];
|
||||
301 [ color="black" label="(5,[[0], [1], [3], [4]],[4, 1, 1, 2])" ];
|
||||
302 [ color="black" label="(7,[[0], [1, 3], [6], [4]],[4, 0, 0, 2])" ];
|
||||
303 [ color="black" label="(5,[[2], [1, 3], [], []],[7, 0, 2, 8])" ];
|
||||
304 [ color="black" label="(6,[[5], [2], [3], [0]],[5, 2, 1, 2])" ];
|
||||
305 [ color="black" label="(5,[[], [1], [3], [2]],[10, 1, 1, 5])" ];
|
||||
306 [ color="black" label="(5,[[], [2], [3], [1]],[10, 2, 1, 4])" ];
|
||||
307 [ color="black" label="(4,[[2], [1], [3], []],[7, 1, 1, 8])" ];
|
||||
308 [ color="black" label="(1,[[0], [], [], []],[4, 5, 2, 8])" ];
|
||||
309 [ color="black" label="(2,[[1], [], [], [0]],[6, 5, 2, 2])" ];
|
||||
310 [ color="black" label="(6,[[4], [], [3], [0]],[4, 5, 1, 2])" ];
|
||||
311 [ color="black" label="(4,[[1, 3], [], [], [2]],[5, 5, 2, 5])" ];
|
||||
312 [ color="black" label="(4,[[], [2], [3], [0]],[10, 2, 1, 2])" ];
|
||||
313 [ color="black" label="(3,[[1], [], [], [2]],[6, 5, 2, 5])" ];
|
||||
314 [ color="black" label="(2,[[], [], [], [1]],[10, 5, 2, 4])" ];
|
||||
315 [ color="black" label="(2,[[1], [], [], []],[6, 5, 2, 8])" ];
|
||||
316 [ color="black" label="(6,[[0], [1, 3], [], [5]],[4, 0, 2, 3])" ];
|
||||
317 [ color="black" label="(7,[[0], [5], [], [1, 3]],[4, 0, 2, 3])" ];
|
||||
318 [ color="black" label="(8,[[5], [1, 3], [6], [2]],[5, 0, 0, 5])" ];
|
||||
319 [ color="black" label="(3,[[0], [], [], [1]],[4, 5, 2, 4])" ];
|
||||
320 [ color="black" label="(3,[[2], [], [], [1]],[7, 5, 2, 4])" ];
|
||||
321 [ color="black" label="(7,[[0], [1], [3], [5]],[4, 1, 1, 3])" ];
|
||||
322 [ color="black" label="(6,[[5], [2], [3], [1]],[5, 2, 1, 4])" ];
|
||||
323 [ color="black" label="(6,[[5], [1], [3], [2]],[5, 1, 1, 5])" ];
|
||||
324 [ color="black" label="(6,[[], [2], [3], [0]],[10, 2, 1, 2])" ];
|
||||
325 [ color="black" label="(7,[[2, 4], [1, 3], [6], [0]],[1, 0, 0, 2])" ];
|
||||
326 [ color="black" label="(7,[[5], [1, 3], [], [2]],[5, 0, 2, 5])" ];
|
||||
327 [ color="black" label="(5,[[2, 4], [1], [3], []],[1, 1, 1, 8])" ];
|
||||
328 [ color="black" label="(5,[[0], [2], [3], []],[4, 2, 1, 8])" ];
|
||||
329 [ color="black" label="(6,[[1], [2], [3], [0]],[6, 2, 1, 2])" ];
|
||||
330 [ color="black" label="(7,[[4], [1, 3], [6], [2]],[4, 0, 0, 5])" ];
|
||||
331 [ color="black" label="(6,[[2, 4], [1, 3], [], []],[1, 0, 2, 8])" ];
|
||||
332 [ color="black" label="(5,[[2, 4], [], [], [1, 3]],[1, 5, 2, 3])" ];
|
||||
333 [ color="black" label="(5,[[4], [2], [3], [1]],[4, 2, 1, 4])" ];
|
||||
334 [ color="black" label="(5,[[2, 4], [1], [3], [0]],[1, 1, 1, 2])" ];
|
||||
335 [ color="black" label="(5,[[], [1], [3], [0]],[10, 1, 1, 2])" ];
|
||||
336 [ color="black" label="(5,[[4], [1], [3], [2]],[4, 1, 1, 5])" ];
|
||||
337 [ color="black" label="(5,[[2], [1, 3], [], [0]],[7, 0, 2, 2])" ];
|
||||
338 [ color="black" label="(6,[[0], [1, 3], [], [2]],[4, 0, 2, 5])" ];
|
||||
339 [ color="black" label="(3,[[], [], [], [0]],[10, 5, 2, 2])" ];
|
||||
340 [ color="black" label="(6,[[4], [1, 3], [], [2]],[4, 0, 2, 5])" ];
|
||||
341 [ color="black" label="(7,[[0], [1, 3], [], [4]],[4, 0, 2, 2])" ];
|
||||
342 [ color="black" label="(8,[[2, 4], [6], [], [1, 3]],[1, 3, 2, 3])" ];
|
||||
343 [ color="black" label="(6,[[2, 4], [1, 3], [], [0]],[1, 0, 2, 2])" ];
|
||||
344 [ color="black" label="(5,[[4], [1, 3], [], [0]],[4, 0, 2, 2])" ];
|
||||
345 [ color="black" label="(5,[[2], [], [], [1, 3]],[7, 5, 2, 3])" ];
|
||||
346 [ color="black" label="(7,[[2], [1], [3], [4]],[7, 1, 1, 2])" ];
|
||||
347 [ color="black" label="(3,[[2], [], [], [0]],[7, 5, 2, 2])" ];
|
||||
348 [ color="black" label="(3,[[0], [], [], [2]],[4, 5, 2, 5])" ];
|
||||
349 [ color="black" label="(8,[[0], [1, 3], [6], [4]],[4, 0, 0, 2])" ];
|
||||
350 [ color="black" label="(7,[[2], [1, 3], [6], [0]],[7, 0, 0, 2])" ];
|
||||
351 [ color="black" label="(5,[[0], [1], [3], [2]],[4, 1, 1, 5])" ];
|
||||
352 [ color="black" label="(5,[[0], [2], [3], [1]],[4, 2, 1, 4])" ];
|
||||
353 [ color="black" label="(5,[[0], [1, 3], [], []],[4, 0, 2, 8])" ];
|
||||
354 [ color="black" label="(5,[[2], [1], [3], [0]],[7, 1, 1, 2])" ];
|
||||
355 [ color="black" label="(4,[[0], [], [], [1, 3]],[4, 5, 2, 3])" ];
|
||||
356 [ color="black" label="(6,[[0], [1], [3], [4]],[4, 1, 1, 2])" ];
|
||||
357 [ color="black" label="(5,[[2], [1], [3], []],[7, 1, 1, 8])" ];
|
||||
358 [ color="black" label="(6,[[], [2], [3], [1]],[10, 2, 1, 4])" ];
|
||||
359 [ color="black" label="(6,[[], [1], [3], [2]],[10, 1, 1, 5])" ];
|
||||
360 [ color="black" label="(2,[[0], [], [], []],[4, 5, 2, 8])" ];
|
||||
361 [ color="black" label="(7,[[0], [1, 3], [6], [2]],[4, 0, 0, 5])" ];
|
||||
362 [ color="black" label="(4,[[0], [1], [3], []],[4, 1, 1, 8])" ];
|
||||
363 [ color="black" label="(3,[[1], [], [], [0]],[6, 5, 2, 2])" ];
|
||||
364 [ color="black" label="(4,[[3], [], [], [0]],[9, 5, 2, 2])" ];
|
||||
365 [ color="black" label="(7,[[2, 4], [1], [3], [5]],[1, 1, 1, 3])" ];
|
||||
366 [ color="black" label="(4,[[1, 3], [], [], [0]],[5, 5, 2, 2])" ];
|
||||
367 [ color="black" label="(4,[[1], [], [], [2]],[6, 5, 2, 5])" ];
|
||||
368 [ color="black" label="(5,[[1, 3], [], [], [2]],[5, 5, 2, 5])" ];
|
||||
369 [ color="black" label="(5,[[4], [2], [3], [0]],[4, 2, 1, 2])" ];
|
||||
370 [ color="black" label="(5,[[], [2], [3], [0]],[10, 2, 1, 2])" ];
|
||||
371 [ color="black" label="(3,[[], [], [], [1]],[10, 5, 2, 4])" ];
|
||||
372 [ color="black" label="(3,[[1], [], [], []],[6, 5, 2, 8])" ];
|
||||
373 [ color="black" label="(8,[[2, 4], [1, 3], [], [5]],[1, 0, 2, 3])" ];
|
||||
374 [ color="black" label="(7,[[0], [1, 3], [], [5]],[4, 0, 2, 3])" ];
|
||||
6 -> 1 [ label="2" ];
|
||||
319 -> 2 [ label="-1" ];
|
||||
320 -> 3 [ label="-1" ];
|
||||
58 -> 4 [ label="-1" ];
|
||||
59 -> 5 [ label="-1" ];
|
||||
240 -> 6 [ label="0" ];
|
||||
72 -> 7 [ label="-1" ];
|
||||
330 -> 8 [ label="-1" ];
|
||||
283 -> 9 [ label="0" ];
|
||||
81 -> 10 [ label="3" ];
|
||||
259 -> 11 [ label="0" ];
|
||||
333 -> 12 [ label="-1" ];
|
||||
336 -> 13 [ label="-1" ];
|
||||
1 -> 14 [ label="0" ];
|
||||
339 -> 15 [ label="-1" ];
|
||||
337 -> 16 [ label="-1" ];
|
||||
340 -> 17 [ label="-1" ];
|
||||
282 -> 18 [ label="1" ];
|
||||
344 -> 19 [ label="-1" ];
|
||||
293 -> 20 [ color="red" label="0" ];
|
||||
82 -> 21 [ label="3" ];
|
||||
345 -> 22 [ label="-1" ];
|
||||
352 -> 23 [ label="-1" ];
|
||||
351 -> 24 [ label="-1" ];
|
||||
348 -> 25 [ label="-1" ];
|
||||
353 -> 26 [ label="-1" ];
|
||||
350 -> 27 [ label="-1" ];
|
||||
347 -> 28 [ label="-1" ];
|
||||
356 -> 29 [ label="-1" ];
|
||||
338 -> 30 [ label="-1" ];
|
||||
354 -> 31 [ label="-1" ];
|
||||
355 -> 32 [ label="-1" ];
|
||||
77 -> 33 [ label="-1" ];
|
||||
360 -> 34 [ label="-1" ];
|
||||
362 -> 35 [ label="-1" ];
|
||||
361 -> 36 [ label="-1" ];
|
||||
327 -> 37 [ label="3" ];
|
||||
86 -> 38 [ label="-1" ];
|
||||
369 -> 39 [ label="-1" ];
|
||||
366 -> 40 [ label="-1" ];
|
||||
91 -> 41 [ label="-1" ];
|
||||
367 -> 42 [ label="-1" ];
|
||||
364 -> 43 [ label="-1" ];
|
||||
368 -> 44 [ label="-1" ];
|
||||
363 -> 45 [ label="-1" ];
|
||||
168 -> 46 [ label="1" ];
|
||||
94 -> 47 [ label="-1" ];
|
||||
90 -> 48 [ label="3" ];
|
||||
97 -> 49 [ label="-1" ];
|
||||
308 -> 50 [ label="1" ];
|
||||
2 -> 51 [ label="-1" ];
|
||||
3 -> 52 [ label="-1" ];
|
||||
50 -> 53 [ label="3" ];
|
||||
269 -> 54 [ label="1" ];
|
||||
219 -> 55 [ label="1" ];
|
||||
127 -> 56 [ label="3" ];
|
||||
309 -> 57 [ label="1" ];
|
||||
72 -> 58 [ label="2" ];
|
||||
109 -> 59 [ label="-1" ];
|
||||
110 -> 60 [ label="-1" ];
|
||||
21 -> 61 [ label="-1" ];
|
||||
286 -> 62 [ label="1" ];
|
||||
275 -> 63 [ color="red" label="3" ];
|
||||
12 -> 64 [ label="-1" ];
|
||||
313 -> 65 [ label="1" ];
|
||||
14 -> 66 [ label="-1" ];
|
||||
10 -> 67 [ label="-1" ];
|
||||
9 -> 68 [ label="-1" ];
|
||||
116 -> 69 [ label="-1" ];
|
||||
54 -> 70 [ label="3" ];
|
||||
16 -> 71 [ label="-1" ];
|
||||
261 -> 72 [ label="1" ];
|
||||
32 -> 73 [ label="-1" ];
|
||||
105 -> 74 [ label="3" ];
|
||||
35 -> 75 [ label="-1" ];
|
||||
131 -> 76 [ label="-1" ];
|
||||
200 -> 77 [ label="0" ];
|
||||
82 -> 78 [ label="0" ];
|
||||
24 -> 79 [ label="-1" ];
|
||||
96 -> 80 [ label="0" ];
|
||||
315 -> 81 [ label="1" ];
|
||||
314 -> 82 [ label="1" ];
|
||||
135 -> 83 [ label="-1" ];
|
||||
46 -> 84 [ label="-1" ];
|
||||
136 -> 85 [ label="-1" ];
|
||||
94 -> 86 [ label="2" ];
|
||||
39 -> 87 [ label="-1" ];
|
||||
210 -> 88 [ label="1" ];
|
||||
45 -> 89 [ label="-1" ];
|
||||
81 -> 90 [ label="0" ];
|
||||
140 -> 91 [ label="-1" ];
|
||||
40 -> 92 [ label="-1" ];
|
||||
258 -> 93 [ label="1" ];
|
||||
11 -> 94 [ label="3" ];
|
||||
57 -> 95 [ label="0" ];
|
||||
93 -> 96 [ label="3" ];
|
||||
143 -> 97 [ label="-1" ];
|
||||
249 -> 98 [ color="red" label="1" ];
|
||||
48 -> 99 [ label="-1" ];
|
||||
50 -> 100 [ label="-1" ];
|
||||
53 -> 101 [ label="-1" ];
|
||||
54 -> 102 [ label="-1" ];
|
||||
348 -> 103 [ label="1" ];
|
||||
56 -> 104 [ label="-1" ];
|
||||
93 -> 105 [ label="0" ];
|
||||
55 -> 106 [ label="-1" ];
|
||||
57 -> 107 [ label="-1" ];
|
||||
62 -> 108 [ label="0" ];
|
||||
179 -> 109 [ label="0" ];
|
||||
116 -> 110 [ label="2" ];
|
||||
158 -> 111 [ label="-1" ];
|
||||
80 -> 112 [ label="-1" ];
|
||||
61 -> 113 [ label="-1" ];
|
||||
62 -> 114 [ label="-1" ];
|
||||
78 -> 115 [ label="-1" ];
|
||||
166 -> 116 [ label="-1" ];
|
||||
363 -> 117 [ label="1" ];
|
||||
164 -> 118 [ label="-1" ];
|
||||
165 -> 119 [ label="-1" ];
|
||||
68 -> 120 [ label="-1" ];
|
||||
65 -> 121 [ label="-1" ];
|
||||
67 -> 122 [ label="-1" ];
|
||||
313 -> 123 [ label="2" ];
|
||||
265 -> 124 [ label="1" ];
|
||||
70 -> 125 [ label="-1" ];
|
||||
21 -> 126 [ label="0" ];
|
||||
360 -> 127 [ label="1" ];
|
||||
74 -> 128 [ label="-1" ];
|
||||
320 -> 129 [ label="1" ];
|
||||
100 -> 130 [ label="3" ];
|
||||
256 -> 131 [ label="2" ];
|
||||
178 -> 132 [ label="-1" ];
|
||||
146 -> 133 [ label="0" ];
|
||||
81 -> 134 [ label="-1" ];
|
||||
190 -> 135 [ label="0" ];
|
||||
148 -> 136 [ label="0" ];
|
||||
96 -> 137 [ label="-1" ];
|
||||
82 -> 138 [ label="-1" ];
|
||||
90 -> 139 [ label="-1" ];
|
||||
143 -> 140 [ label="2" ];
|
||||
88 -> 141 [ label="-1" ];
|
||||
93 -> 142 [ label="-1" ];
|
||||
332 -> 143 [ label="1" ];
|
||||
95 -> 144 [ label="-1" ];
|
||||
98 -> 145 [ color="red" label="0" ];
|
||||
98 -> 146 [ label="-1" ];
|
||||
191 -> 147 [ label="-1" ];
|
||||
347 -> 148 [ label="1" ];
|
||||
100 -> 149 [ label="-1" ];
|
||||
339 -> 150 [ label="2" ];
|
||||
103 -> 151 [ label="-1" ];
|
||||
102 -> 152 [ label="-1" ];
|
||||
105 -> 153 [ label="-1" ];
|
||||
101 -> 154 [ label="-1" ];
|
||||
202 -> 155 [ label="-1" ];
|
||||
108 -> 156 [ label="-1" ];
|
||||
348 -> 157 [ label="2" ];
|
||||
165 -> 158 [ label="2" ];
|
||||
112 -> 159 [ label="-1" ];
|
||||
172 -> 160 [ label="2" ];
|
||||
115 -> 161 [ label="-1" ];
|
||||
114 -> 162 [ label="-1" ];
|
||||
117 -> 163 [ label="-1" ];
|
||||
59 -> 164 [ label="1" ];
|
||||
205 -> 165 [ label="-1" ];
|
||||
129 -> 166 [ label="0" ];
|
||||
121 -> 167 [ label="-1" ];
|
||||
123 -> 168 [ label="-1" ];
|
||||
124 -> 169 [ label="-1" ];
|
||||
125 -> 170 [ label="-1" ];
|
||||
363 -> 171 [ label="2" ];
|
||||
126 -> 172 [ label="-1" ];
|
||||
129 -> 173 [ label="-1" ];
|
||||
128 -> 174 [ label="-1" ];
|
||||
127 -> 175 [ label="-1" ];
|
||||
319 -> 176 [ label="1" ];
|
||||
130 -> 177 [ label="-1" ];
|
||||
214 -> 178 [ label="2" ];
|
||||
320 -> 179 [ label="2" ];
|
||||
133 -> 180 [ label="-1" ];
|
||||
146 -> 181 [ label="-1" ];
|
||||
339 -> 182 [ label="1" ];
|
||||
107 -> 183 [ label="-1" ];
|
||||
138 -> 184 [ label="-1" ];
|
||||
225 -> 185 [ label="-1" ];
|
||||
222 -> 186 [ label="-1" ];
|
||||
149 -> 187 [ label="3" ];
|
||||
138 -> 188 [ label="0" ];
|
||||
144 -> 189 [ label="-1" ];
|
||||
145 -> 190 [ label="-1" ];
|
||||
202 -> 191 [ label="2" ];
|
||||
190 -> 192 [ label="-1" ];
|
||||
148 -> 193 [ label="-1" ];
|
||||
149 -> 194 [ label="-1" ];
|
||||
150 -> 195 [ label="-1" ];
|
||||
267 -> 196 [ label="2" ];
|
||||
154 -> 197 [ label="-1" ];
|
||||
229 -> 198 [ label="2" ];
|
||||
235 -> 199 [ label="-1" ];
|
||||
347 -> 200 [ label="2" ];
|
||||
157 -> 201 [ label="-1" ];
|
||||
61 -> 202 [ label="0" ];
|
||||
239 -> 203 [ label="-1" ];
|
||||
160 -> 204 [ label="-1" ];
|
||||
74 -> 205 [ label="0" ];
|
||||
252 -> 206 [ label="3" ];
|
||||
191 -> 207 [ label="0" ];
|
||||
163 -> 208 [ label="-1" ];
|
||||
168 -> 209 [ label="-1" ];
|
||||
171 -> 210 [ label="-1" ];
|
||||
172 -> 211 [ label="-1" ];
|
||||
114 -> 212 [ label="0" ];
|
||||
96 -> 213 [ label="1" ];
|
||||
368 -> 214 [ label="1" ];
|
||||
173 -> 215 [ label="-1" ];
|
||||
177 -> 216 [ label="-1" ];
|
||||
176 -> 217 [ label="-1" ];
|
||||
179 -> 219 [ label="-1" ];
|
||||
261 -> 220 [ label="-1" ];
|
||||
319 -> 221 [ label="2" ];
|
||||
277 -> 222 [ label="1" ];
|
||||
182 -> 223 [ label="-1" ];
|
||||
183 -> 224 [ label="-1" ];
|
||||
264 -> 225 [ label="-1" ];
|
||||
182 -> 226 [ label="0" ];
|
||||
188 -> 227 [ label="-1" ];
|
||||
187 -> 228 [ label="-1" ];
|
||||
345 -> 229 [ label="1" ];
|
||||
192 -> 230 [ label="-1" ];
|
||||
196 -> 231 [ label="-1" ];
|
||||
278 -> 232 [ label="3" ];
|
||||
316 -> 233 [ label="2" ];
|
||||
198 -> 234 [ label="-1" ];
|
||||
284 -> 235 [ label="-1" ];
|
||||
200 -> 236 [ label="-1" ];
|
||||
275 -> 237 [ label="-1" ];
|
||||
277 -> 238 [ label="-1" ];
|
||||
77 -> 239 [ label="1" ];
|
||||
213 -> 240 [ label="-1" ];
|
||||
206 -> 241 [ label="-1" ];
|
||||
282 -> 242 [ label="-1" ];
|
||||
57 -> 243 [ label="2" ];
|
||||
96 -> 244 [ label="2" ];
|
||||
82 -> 245 [ label="2" ];
|
||||
207 -> 246 [ label="-1" ];
|
||||
212 -> 247 [ label="-1" ];
|
||||
210 -> 248 [ label="-1" ];
|
||||
218 -> 249 [ color="red" label="3" ];
|
||||
53 -> 250 [ label="1" ];
|
||||
259 -> 251 [ label="3" ];
|
||||
81 -> 252 [ label="2" ];
|
||||
214 -> 253 [ label="-1" ];
|
||||
146 -> 254 [ label="1" ];
|
||||
300 -> 255 [ label="3" ];
|
||||
40 -> 256 [ label="1" ];
|
||||
307 -> 257 [ label="3" ];
|
||||
218 -> 258 [ label="-1" ];
|
||||
105 -> 259 [ label="1" ];
|
||||
304 -> 260 [ label="-1" ];
|
||||
3 -> 261 [ label="0" ];
|
||||
219 -> 262 [ label="-1" ];
|
||||
221 -> 263 [ label="-1" ];
|
||||
109 -> 264 [ label="1" ];
|
||||
150 -> 265 [ label="0" ];
|
||||
226 -> 266 [ label="-1" ];
|
||||
32 -> 267 [ label="1" ];
|
||||
229 -> 268 [ label="-1" ];
|
||||
308 -> 269 [ label="3" ];
|
||||
322 -> 270 [ label="-1" ];
|
||||
323 -> 271 [ label="-1" ];
|
||||
233 -> 272 [ label="-1" ];
|
||||
232 -> 273 [ label="-1" ];
|
||||
35 -> 274 [ label="3" ];
|
||||
325 -> 275 [ color="red" label="-1" ];
|
||||
327 -> 276 [ label="-1" ];
|
||||
282 -> 277 [ label="2" ];
|
||||
127 -> 278 [ label="2" ];
|
||||
243 -> 279 [ label="-1" ];
|
||||
240 -> 280 [ label="-1" ];
|
||||
343 -> 281 [ label="-1" ];
|
||||
332 -> 282 [ label="-1" ];
|
||||
146 -> 283 [ label="2" ];
|
||||
334 -> 284 [ label="-1" ];
|
||||
250 -> 285 [ label="-1" ];
|
||||
249 -> 286 [ label="-1" ];
|
||||
255 -> 287 [ label="-1" ];
|
||||
251 -> 288 [ label="-1" ];
|
||||
213 -> 289 [ label="0" ];
|
||||
254 -> 290 [ label="-1" ];
|
||||
252 -> 291 [ label="-1" ];
|
||||
256 -> 292 [ label="-1" ];
|
||||
145 -> 293 [ color="red" label="1" ];
|
||||
53 -> 294 [ label="2" ];
|
||||
54 -> 295 [ label="2" ];
|
||||
145 -> 296 [ label="2" ];
|
||||
257 -> 297 [ label="-1" ];
|
||||
320 -> 298 [ label="3" ];
|
||||
258 -> 299 [ label="-1" ];
|
||||
100 -> 300 [ label="1" ];
|
||||
362 -> 301 [ label="3" ];
|
||||
287 -> 302 [ label="2" ];
|
||||
259 -> 303 [ label="-1" ];
|
||||
370 -> 304 [ label="0" ];
|
||||
244 -> 305 [ label="-1" ];
|
||||
245 -> 306 [ label="-1" ];
|
||||
105 -> 307 [ label="2" ];
|
||||
218 -> 308 [ label="0" ];
|
||||
249 -> 309 [ label="0" ];
|
||||
265 -> 310 [ label="-1" ];
|
||||
313 -> 311 [ label="0" ];
|
||||
62 -> 312 [ label="2" ];
|
||||
315 -> 313 [ label="3" ];
|
||||
258 -> 314 [ label="3" ];
|
||||
258 -> 315 [ label="0" ];
|
||||
353 -> 316 [ label="3" ];
|
||||
267 -> 317 [ label="-1" ];
|
||||
1 -> 318 [ label="-1" ];
|
||||
269 -> 319 [ label="-1" ];
|
||||
314 -> 320 [ label="0" ];
|
||||
274 -> 321 [ label="-1" ];
|
||||
306 -> 322 [ label="0" ];
|
||||
305 -> 323 [ label="0" ];
|
||||
370 -> 324 [ label="-1" ];
|
||||
343 -> 325 [ color="red" label="2" ];
|
||||
6 -> 326 [ label="-1" ];
|
||||
307 -> 327 [ label="0" ];
|
||||
278 -> 328 [ label="-1" ];
|
||||
279 -> 329 [ label="-1" ];
|
||||
340 -> 330 [ label="2" ];
|
||||
11 -> 331 [ label="-1" ];
|
||||
298 -> 332 [ label="0" ];
|
||||
245 -> 333 [ label="0" ];
|
||||
296 -> 334 [ label="0" ];
|
||||
283 -> 335 [ label="-1" ];
|
||||
244 -> 336 [ label="0" ];
|
||||
293 -> 337 [ label="-1" ];
|
||||
285 -> 338 [ label="-1" ];
|
||||
286 -> 339 [ label="-1" ];
|
||||
289 -> 340 [ label="-1" ];
|
||||
287 -> 341 [ label="-1" ];
|
||||
18 -> 342 [ label="-1" ];
|
||||
20 -> 343 [ color="red" label="-1" ];
|
||||
254 -> 344 [ label="0" ];
|
||||
298 -> 345 [ label="-1" ];
|
||||
297 -> 346 [ label="-1" ];
|
||||
286 -> 347 [ label="0" ];
|
||||
360 -> 348 [ label="3" ];
|
||||
302 -> 349 [ label="-1" ];
|
||||
16 -> 350 [ label="2" ];
|
||||
294 -> 351 [ label="-1" ];
|
||||
295 -> 352 [ label="-1" ];
|
||||
300 -> 353 [ label="-1" ];
|
||||
296 -> 354 [ label="-1" ];
|
||||
319 -> 355 [ label="3" ];
|
||||
301 -> 356 [ label="-1" ];
|
||||
307 -> 357 [ label="-1" ];
|
||||
306 -> 358 [ label="-1" ];
|
||||
305 -> 359 [ label="-1" ];
|
||||
308 -> 360 [ label="-1" ];
|
||||
338 -> 361 [ label="2" ];
|
||||
100 -> 362 [ label="2" ];
|
||||
309 -> 363 [ label="-1" ];
|
||||
339 -> 364 [ label="0" ];
|
||||
37 -> 365 [ label="-1" ];
|
||||
363 -> 366 [ label="0" ];
|
||||
313 -> 367 [ label="-1" ];
|
||||
311 -> 368 [ label="-1" ];
|
||||
312 -> 369 [ label="0" ];
|
||||
312 -> 370 [ label="-1" ];
|
||||
314 -> 371 [ label="-1" ];
|
||||
315 -> 372 [ label="-1" ];
|
||||
47 -> 373 [ label="-1" ];
|
||||
316 -> 374 [ label="-1" ];
|
||||
}
|
||||
19
PI5/generated/ej2_f1.dot
Normal file
19
PI5/generated/ej2_f1.dot
Normal file
@@ -0,0 +1,19 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(5, [], [140, 0, 50], 2)" ];
|
||||
2 [ color="black" label="(3, [1, 2], [140, 150, 150], 2)" ];
|
||||
3 [ color="black" label="(1, [0, 1, 2], [150, 150, 150], 0)" ];
|
||||
4 [ color="black" label="(2, [1, 2], [140, 150, 150], 2)" ];
|
||||
5 [ color="black" label="(1, [1, 2], [140, 150, 150], 2)" ];
|
||||
6 [ color="black" label="(0, [0, 1, 2], [150, 150, 150], 0)" ];
|
||||
7 [ color="black" label="(3, [2], [140, 0, 150], 3)" ];
|
||||
8 [ color="black" label="(4, [], [140, 0, 50], 2)" ];
|
||||
9 [ color="black" label="(4, [2], [140, 0, 150], 3)" ];
|
||||
8 -> 1 [ color="red" label="0" ];
|
||||
4 -> 2 [ label="0" ];
|
||||
6 -> 3 [ label="0" ];
|
||||
5 -> 4 [ color="red" label="0" ];
|
||||
6 -> 5 [ color="red" label="1" ];
|
||||
4 -> 7 [ color="red" label="1" ];
|
||||
7 -> 8 [ color="red" label="1" ];
|
||||
7 -> 9 [ label="0" ];
|
||||
}
|
||||
187
PI5/generated/ej2_f2.dot
Normal file
187
PI5/generated/ej2_f2.dot
Normal file
@@ -0,0 +1,187 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(4, [2, 3], [50, 85, 100, 100], -2)" ];
|
||||
2 [ color="black" label="(5, [], [50, 85, 90, 25], 1)" ];
|
||||
3 [ color="black" label="(2, [0, 1, 2, 3], [100, 100, 100, 100], 0)" ];
|
||||
4 [ color="black" label="(6, [1, 3], [50, 100, 90, 100], 0)" ];
|
||||
5 [ color="black" label="(3, [0, 1], [100, 100, 90, 25], 3)" ];
|
||||
6 [ color="black" label="(3, [0, 1, 2], [100, 100, 100, 25], 2)" ];
|
||||
7 [ color="black" label="(5, [2], [50, 20, 100, 25], 3)" ];
|
||||
8 [ color="black" label="(6, [1, 2, 3], [50, 100, 100, 100], -1)" ];
|
||||
9 [ color="black" label="(6, [0, 1], [100, 100, 5, 25], 4)" ];
|
||||
10 [ color="black" label="(4, [3], [50, 85, 90, 100], -1)" ];
|
||||
11 [ color="black" label="(5, [0, 1, 3], [100, 100, 90, 100], 1)" ];
|
||||
12 [ color="black" label="(6, [1], [50, 100, 5, 25], 3)" ];
|
||||
13 [ color="black" label="(6, [0, 3], [100, 20, 5, 100], 4)" ];
|
||||
14 [ color="black" label="(6, [0, 1], [100, 100, 90, 25], 3)" ];
|
||||
15 [ color="black" label="(4, [0, 3], [100, 85, 90, 100], 0)" ];
|
||||
16 [ color="black" label="(6, [3], [50, 20, 5, 100], 3)" ];
|
||||
17 [ color="black" label="(6, [2], [50, 85, 100, 25], 0)" ];
|
||||
18 [ color="black" label="(3, [0, 1, 2, 3], [100, 100, 100, 100], 0)" ];
|
||||
19 [ color="black" label="(6, [3], [50, 85, 5, 100], 0)" ];
|
||||
20 [ color="black" label="(4, [], [50, 85, 90, 25], 1)" ];
|
||||
21 [ color="black" label="(4, [0, 1], [100, 100, 90, 25], 3)" ];
|
||||
22 [ color="black" label="(6, [0, 3], [100, 20, 90, 100], 3)" ];
|
||||
23 [ color="black" label="(6, [0, 1, 3], [100, 100, 5, 100], 2)" ];
|
||||
24 [ color="black" label="(4, [0, 2], [100, 85, 100, 25], 1)" ];
|
||||
25 [ color="black" label="(6, [1, 3], [50, 100, 5, 100], 1)" ];
|
||||
26 [ color="black" label="(4, [1], [50, 100, 90, 25], 2)" ];
|
||||
27 [ color="black" label="(5, [0], [100, 85, 90, 25], 2)" ];
|
||||
28 [ color="black" label="(4, [0, 1, 2], [100, 100, 100, 25], 2)" ];
|
||||
29 [ color="black" label="(4, [0, 2, 3], [100, 85, 100, 100], -1)" ];
|
||||
30 [ color="black" label="(3, [0, 2, 3], [100, 85, 100, 100], -1)" ];
|
||||
31 [ color="black" label="(6, [3], [50, 20, 90, 100], 2)" ];
|
||||
32 [ color="black" label="(7, [1], [50, 100, 5, 25], 3)" ];
|
||||
33 [ color="black" label="(4, [0], [100, 85, 90, 25], 2)" ];
|
||||
34 [ color="black" label="(6, [0, 3], [100, 85, 5, 100], 1)" ];
|
||||
35 [ color="black" label="(6, [0, 2, 3], [100, 20, 100, 100], 2)" ];
|
||||
36 [ color="black" label="(6, [0, 1, 3], [100, 100, 90, 100], 1)" ];
|
||||
37 [ color="black" label="(5, [0, 2], [100, 85, 100, 25], 1)" ];
|
||||
38 [ color="black" label="(6, [0, 1, 2, 3], [100, 100, 100, 100], 0)" ];
|
||||
39 [ color="black" label="(6, [0], [100, 20, 5, 25], 6)" ];
|
||||
40 [ color="black" label="(5, [2], [50, 85, 100, 25], 0)" ];
|
||||
41 [ color="black" label="(3, [0, 3], [100, 85, 90, 100], 0)" ];
|
||||
42 [ color="black" label="(2, [0, 1, 3], [100, 100, 90, 100], 1)" ];
|
||||
43 [ color="black" label="(4, [1, 2], [50, 100, 100, 25], 1)" ];
|
||||
44 [ color="black" label="(6, [2, 3], [50, 20, 100, 100], 1)" ];
|
||||
45 [ color="black" label="(0, [0, 1, 2, 3], [100, 100, 100, 100], 0)" ];
|
||||
46 [ color="black" label="(5, [0, 3], [100, 85, 90, 100], 0)" ];
|
||||
47 [ color="black" label="(5, [0, 3], [100, 20, 90, 100], 3)" ];
|
||||
48 [ color="black" label="(4, [1, 3], [50, 100, 90, 100], 0)" ];
|
||||
49 [ color="black" label="(3, [0, 2], [100, 85, 100, 25], 1)" ];
|
||||
50 [ color="black" label="(4, [0, 1, 2, 3], [100, 100, 100, 100], 0)" ];
|
||||
51 [ color="black" label="(4, [1, 2, 3], [50, 100, 100, 100], -1)" ];
|
||||
52 [ color="black" label="(6, [0], [100, 85, 5, 25], 3)" ];
|
||||
53 [ color="black" label="(6, [], [50, 20, 5, 25], 5)" ];
|
||||
54 [ color="black" label="(5, [1], [50, 100, 90, 25], 2)" ];
|
||||
55 [ color="black" label="(1, [0, 1, 2], [100, 100, 100, 25], 2)" ];
|
||||
56 [ color="black" label="(6, [0], [100, 85, 90, 25], 2)" ];
|
||||
57 [ color="black" label="(6, [0], [100, 20, 90, 25], 5)" ];
|
||||
58 [ color="black" label="(5, [0, 1, 2], [100, 100, 100, 25], 2)" ];
|
||||
59 [ color="black" label="(5, [0, 2, 3], [100, 85, 100, 100], -1)" ];
|
||||
60 [ color="black" label="(3, [0], [100, 85, 90, 25], 2)" ];
|
||||
61 [ color="black" label="(5, [1, 2], [50, 100, 100, 25], 1)" ];
|
||||
62 [ color="black" label="(3, [0, 1, 3], [100, 100, 90, 100], 1)" ];
|
||||
63 [ color="black" label="(5, [3], [50, 20, 90, 100], 2)" ];
|
||||
64 [ color="black" label="(5, [0, 2, 3], [100, 20, 100, 100], 2)" ];
|
||||
65 [ color="black" label="(6, [0, 2], [100, 85, 100, 25], 1)" ];
|
||||
66 [ color="black" label="(6, [], [50, 85, 90, 25], 1)" ];
|
||||
67 [ color="black" label="(6, [0, 2], [100, 20, 100, 25], 4)" ];
|
||||
68 [ color="black" label="(4, [2], [50, 85, 100, 25], 0)" ];
|
||||
69 [ color="black" label="(5, [2, 3], [50, 20, 100, 100], 1)" ];
|
||||
70 [ color="black" label="(7, [], [50, 85, 5, 25], 2)" ];
|
||||
71 [ color="black" label="(6, [], [50, 20, 90, 25], 4)" ];
|
||||
72 [ color="black" label="(1, [0, 1, 2, 3], [100, 100, 100, 100], 0)" ];
|
||||
73 [ color="black" label="(6, [0, 3], [100, 85, 90, 100], 0)" ];
|
||||
74 [ color="black" label="(5, [1, 3], [50, 100, 90, 100], 0)" ];
|
||||
75 [ color="black" label="(5, [2, 3], [50, 85, 100, 100], -2)" ];
|
||||
76 [ color="black" label="(6, [2], [50, 20, 100, 25], 3)" ];
|
||||
77 [ color="black" label="(2, [0, 1], [100, 100, 90, 25], 3)" ];
|
||||
78 [ color="black" label="(5, [0, 1, 2, 3], [100, 100, 100, 100], 0)" ];
|
||||
79 [ color="black" label="(2, [0, 1, 2], [100, 100, 100, 25], 2)" ];
|
||||
80 [ color="black" label="(5, [1, 2, 3], [50, 100, 100, 100], -1)" ];
|
||||
81 [ color="black" label="(6, [0, 2, 3], [100, 85, 100, 100], -1)" ];
|
||||
82 [ color="black" label="(6, [1], [50, 100, 90, 25], 2)" ];
|
||||
83 [ color="black" label="(6, [3], [50, 85, 90, 100], -1)" ];
|
||||
84 [ color="black" label="(6, [0, 1, 2], [100, 100, 100, 25], 2)" ];
|
||||
85 [ color="black" label="(4, [0, 1, 3], [100, 100, 90, 100], 1)" ];
|
||||
86 [ color="black" label="(5, [3], [50, 85, 90, 100], -1)" ];
|
||||
87 [ color="black" label="(6, [1, 2], [50, 100, 100, 25], 1)" ];
|
||||
88 [ color="black" label="(5, [0], [100, 20, 90, 25], 5)" ];
|
||||
89 [ color="black" label="(5, [0, 1], [100, 100, 90, 25], 3)" ];
|
||||
90 [ color="black" label="(5, [0, 2], [100, 20, 100, 25], 4)" ];
|
||||
91 [ color="black" label="(6, [2, 3], [50, 85, 100, 100], -2)" ];
|
||||
92 [ color="black" label="(6, [], [50, 85, 5, 25], 2)" ];
|
||||
93 [ color="black" label="(5, [], [50, 20, 90, 25], 4)" ];
|
||||
30 -> 1 [ label="1" ];
|
||||
20 -> 2 [ label="0" ];
|
||||
72 -> 3 [ label="0" ];
|
||||
74 -> 4 [ label="0" ];
|
||||
77 -> 5 [ label="0" ];
|
||||
79 -> 6 [ label="0" ];
|
||||
43 -> 7 [ label="1" ];
|
||||
80 -> 8 [ label="0" ];
|
||||
58 -> 9 [ label="1" ];
|
||||
41 -> 10 [ label="1" ];
|
||||
85 -> 11 [ label="0" ];
|
||||
61 -> 12 [ label="1" ];
|
||||
64 -> 13 [ label="1" ];
|
||||
89 -> 14 [ label="0" ];
|
||||
41 -> 15 [ label="0" ];
|
||||
69 -> 16 [ label="1" ];
|
||||
40 -> 17 [ label="0" ];
|
||||
3 -> 18 [ label="0" ];
|
||||
75 -> 19 [ label="1" ];
|
||||
60 -> 20 [ label="1" ];
|
||||
5 -> 21 [ label="0" ];
|
||||
47 -> 22 [ label="0" ];
|
||||
78 -> 23 [ label="1" ];
|
||||
49 -> 24 [ label="0" ];
|
||||
80 -> 25 [ label="1" ];
|
||||
5 -> 26 [ label="1" ];
|
||||
33 -> 27 [ label="0" ];
|
||||
6 -> 28 [ label="0" ];
|
||||
30 -> 29 [ label="0" ];
|
||||
3 -> 30 [ label="1" ];
|
||||
63 -> 31 [ label="0" ];
|
||||
12 -> 32 [ label="0" ];
|
||||
60 -> 33 [ label="0" ];
|
||||
59 -> 34 [ label="1" ];
|
||||
64 -> 35 [ label="0" ];
|
||||
11 -> 36 [ label="0" ];
|
||||
24 -> 37 [ label="0" ];
|
||||
78 -> 38 [ label="0" ];
|
||||
90 -> 39 [ label="1" ];
|
||||
68 -> 40 [ color="red" label="0" ];
|
||||
42 -> 41 [ label="1" ];
|
||||
72 -> 42 [ label="1" ];
|
||||
6 -> 43 [ label="1" ];
|
||||
69 -> 44 [ label="0" ];
|
||||
15 -> 46 [ label="0" ];
|
||||
85 -> 47 [ label="1" ];
|
||||
62 -> 48 [ label="1" ];
|
||||
79 -> 49 [ color="red" label="1" ];
|
||||
18 -> 50 [ label="0" ];
|
||||
18 -> 51 [ label="1" ];
|
||||
37 -> 52 [ label="1" ];
|
||||
7 -> 53 [ label="1" ];
|
||||
26 -> 54 [ label="0" ];
|
||||
45 -> 55 [ color="red" label="1" ];
|
||||
27 -> 56 [ label="0" ];
|
||||
88 -> 57 [ label="0" ];
|
||||
28 -> 58 [ label="0" ];
|
||||
29 -> 59 [ label="0" ];
|
||||
77 -> 60 [ label="1" ];
|
||||
43 -> 61 [ label="0" ];
|
||||
42 -> 62 [ label="0" ];
|
||||
48 -> 63 [ label="1" ];
|
||||
50 -> 64 [ label="1" ];
|
||||
37 -> 65 [ label="0" ];
|
||||
2 -> 66 [ label="0" ];
|
||||
90 -> 67 [ label="0" ];
|
||||
49 -> 68 [ color="red" label="1" ];
|
||||
51 -> 69 [ label="1" ];
|
||||
92 -> 70 [ color="red" label="0" ];
|
||||
93 -> 71 [ label="0" ];
|
||||
45 -> 72 [ label="0" ];
|
||||
46 -> 73 [ label="0" ];
|
||||
48 -> 74 [ label="0" ];
|
||||
1 -> 75 [ label="0" ];
|
||||
7 -> 76 [ label="0" ];
|
||||
55 -> 77 [ label="1" ];
|
||||
50 -> 78 [ label="0" ];
|
||||
55 -> 79 [ color="red" label="0" ];
|
||||
51 -> 80 [ label="0" ];
|
||||
59 -> 81 [ label="0" ];
|
||||
54 -> 82 [ label="0" ];
|
||||
86 -> 83 [ label="0" ];
|
||||
58 -> 84 [ label="0" ];
|
||||
62 -> 85 [ label="0" ];
|
||||
10 -> 86 [ label="0" ];
|
||||
61 -> 87 [ label="0" ];
|
||||
21 -> 88 [ label="1" ];
|
||||
21 -> 89 [ label="0" ];
|
||||
28 -> 90 [ label="1" ];
|
||||
75 -> 91 [ label="0" ];
|
||||
40 -> 92 [ color="red" label="1" ];
|
||||
26 -> 93 [ label="1" ];
|
||||
}
|
||||
951
PI5/generated/ej2_f3.dot
Normal file
951
PI5/generated/ej2_f3.dot
Normal file
@@ -0,0 +1,951 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(3, [0, 3, 4], [10, 7, 6, 10, 10], -2)" ];
|
||||
2 [ color="black" label="(6, [0, 2, 4], [10, 7, 10, 5, 10], -2)" ];
|
||||
3 [ color="black" label="(6, [0, 2], [10, 7, 10, 5, 2], -4)" ];
|
||||
4 [ color="black" label="(9, [4], [5, 2, 5, 5, 10], -6)" ];
|
||||
5 [ color="black" label="(10, [1, 3, 4], [3, 10, 5, 10, 10], 0)" ];
|
||||
6 [ color="black" label="(9, [], [5, 2, 5, 5, 2], -8)" ];
|
||||
7 [ color="black" label="(10, [1, 3], [3, 10, 5, 10, 2], -2)" ];
|
||||
8 [ color="black" label="(10, [4], [5, 2, 4, 5, 10], -3)" ];
|
||||
9 [ color="black" label="(9, [0, 2], [10, 2, 10, 5, 2], -5)" ];
|
||||
10 [ color="black" label="(10, [], [5, 2, 4, 5, 2], -5)" ];
|
||||
11 [ color="black" label="(9, [0, 2, 4], [10, 2, 10, 5, 10], -3)" ];
|
||||
12 [ color="black" label="(2, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
13 [ color="black" label="(6, [], [5, 7, 5, 5, 2], -7)" ];
|
||||
14 [ color="black" label="(6, [4], [5, 7, 5, 5, 10], -5)" ];
|
||||
15 [ color="black" label="(10, [2], [3, 2, 10, 5, 2], -3)" ];
|
||||
16 [ color="black" label="(10, [2, 4], [3, 2, 10, 5, 10], -1)" ];
|
||||
17 [ color="black" label="(6, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
18 [ color="black" label="(6, [0, 1, 2, 3], [10, 10, 10, 10, 2], -2)" ];
|
||||
19 [ color="black" label="(6, [1, 3, 4], [5, 10, 5, 10, 10], -3)" ];
|
||||
20 [ color="black" label="(6, [1, 3], [5, 10, 5, 10, 2], -5)" ];
|
||||
21 [ color="black" label="(5, [4], [5, 7, 5, 5, 10], -5)" ];
|
||||
22 [ color="black" label="(8, [0, 3, 4], [10, 2, 5, 10, 10], -3)" ];
|
||||
23 [ color="black" label="(8, [0, 3], [10, 2, 5, 10, 2], -5)" ];
|
||||
24 [ color="black" label="(9, [0, 3, 4], [10, 2, 4, 10, 10], 0)" ];
|
||||
25 [ color="black" label="(9, [0, 3], [10, 2, 4, 10, 2], -2)" ];
|
||||
26 [ color="black" label="(8, [1, 2, 4], [5, 10, 10, 5, 10], -3)" ];
|
||||
27 [ color="black" label="(10, [0, 1, 3], [10, 10, 5, 10, 2], -4)" ];
|
||||
28 [ color="black" label="(10, [0, 1, 3, 4], [10, 10, 5, 10, 10], -2)" ];
|
||||
29 [ color="black" label="(10, [0, 4], [10, 0, 4, 5, 10], 0)" ];
|
||||
30 [ color="black" label="(8, [1, 2], [5, 10, 10, 5, 2], -5)" ];
|
||||
31 [ color="black" label="(10, [0], [10, 0, 4, 5, 2], -2)" ];
|
||||
32 [ color="black" label="(9, [], [3, 7, 6, 5, 2], -4)" ];
|
||||
33 [ color="black" label="(10, [], [3, 7, 5, 5, 2], -4)" ];
|
||||
34 [ color="black" label="(9, [4], [3, 7, 6, 5, 10], -2)" ];
|
||||
35 [ color="black" label="(10, [4], [3, 7, 5, 5, 10], -2)" ];
|
||||
36 [ color="black" label="(7, [2, 3, 4], [5, 7, 10, 10, 10], -1)" ];
|
||||
37 [ color="black" label="(7, [2, 3], [5, 7, 10, 10, 2], -3)" ];
|
||||
38 [ color="black" label="(5, [0, 2, 4], [10, 7, 10, 5, 10], -2)" ];
|
||||
39 [ color="black" label="(10, [0], [10, 7, 4, 5, 2], -3)" ];
|
||||
40 [ color="black" label="(10, [0, 4], [10, 7, 4, 5, 10], -1)" ];
|
||||
41 [ color="black" label="(8, [0], [10, 7, 6, 5, 2], -6)" ];
|
||||
42 [ color="black" label="(9, [0], [10, 7, 5, 5, 2], -6)" ];
|
||||
43 [ color="black" label="(8, [0, 4], [10, 7, 6, 5, 10], -4)" ];
|
||||
44 [ color="black" label="(9, [0, 4], [10, 7, 5, 5, 10], -4)" ];
|
||||
45 [ color="black" label="(10, [4], [5, 2, 5, 5, 10], -6)" ];
|
||||
46 [ color="black" label="(10, [0, 2], [10, 2, 10, 5, 2], -5)" ];
|
||||
47 [ color="black" label="(10, [3], [3, 2, 4, 10, 2], 0)" ];
|
||||
48 [ color="black" label="(10, [], [5, 2, 5, 5, 2], -8)" ];
|
||||
49 [ color="black" label="(5, [0, 1, 4], [10, 10, 5, 5, 10], -4)" ];
|
||||
50 [ color="black" label="(10, [3, 4], [3, 2, 4, 10, 10], 2)" ];
|
||||
51 [ color="black" label="(3, [1, 3, 4], [5, 10, 6, 10, 10], -3)" ];
|
||||
52 [ color="black" label="(9, [3], [3, 2, 5, 10, 2], -3)" ];
|
||||
53 [ color="black" label="(9, [3, 4], [3, 2, 5, 10, 10], -1)" ];
|
||||
54 [ color="black" label="(10, [0, 2, 4], [10, 2, 10, 5, 10], -3)" ];
|
||||
55 [ color="black" label="(3, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
56 [ color="black" label="(6, [2, 3, 4], [5, 7, 10, 10, 10], -1)" ];
|
||||
57 [ color="black" label="(6, [2, 3], [5, 7, 10, 10, 2], -3)" ];
|
||||
58 [ color="black" label="(10, [0, 4], [10, 7, 6, 5, 10], -4)" ];
|
||||
59 [ color="black" label="(10, [0], [10, 7, 6, 5, 2], -6)" ];
|
||||
60 [ color="black" label="(8, [0, 1, 3, 4], [10, 10, 5, 10, 10], -2)" ];
|
||||
61 [ color="black" label="(9, [0, 1, 3, 4], [10, 10, 4, 10, 10], 1)" ];
|
||||
62 [ color="black" label="(8, [0, 1, 3], [10, 10, 5, 10, 2], -4)" ];
|
||||
63 [ color="black" label="(9, [0, 1, 3], [10, 10, 4, 10, 2], -1)" ];
|
||||
64 [ color="black" label="(7, [1, 3, 4], [5, 10, 5, 10, 10], -3)" ];
|
||||
65 [ color="black" label="(10, [3], [3, 2, 5, 10, 2], -3)" ];
|
||||
66 [ color="black" label="(10, [3, 4], [3, 2, 5, 10, 10], -1)" ];
|
||||
67 [ color="black" label="(10, [3, 4], [5, 7, 5, 10, 10], -3)" ];
|
||||
68 [ color="black" label="(7, [1, 3], [5, 10, 5, 10, 2], -5)" ];
|
||||
69 [ color="black" label="(10, [0, 1, 2, 4], [10, 10, 10, 5, 10], -2)" ];
|
||||
70 [ color="black" label="(10, [3], [5, 7, 5, 10, 2], -5)" ];
|
||||
71 [ color="black" label="(10, [0, 1, 2], [10, 10, 10, 5, 2], -4)" ];
|
||||
72 [ color="black" label="(9, [0, 3], [10, 2, 5, 10, 2], -5)" ];
|
||||
73 [ color="black" label="(10, [0, 3, 4], [10, 2, 4, 10, 10], 0)" ];
|
||||
74 [ color="black" label="(7, [0, 2, 4], [10, 7, 10, 5, 10], -2)" ];
|
||||
75 [ color="black" label="(10, [0, 3], [10, 2, 4, 10, 2], -2)" ];
|
||||
76 [ color="black" label="(7, [0, 2], [10, 7, 10, 5, 2], -4)" ];
|
||||
77 [ color="black" label="(9, [1, 2], [5, 10, 10, 5, 2], -5)" ];
|
||||
78 [ color="black" label="(9, [1, 2, 4], [5, 10, 10, 5, 10], -3)" ];
|
||||
79 [ color="black" label="(9, [0, 3, 4], [10, 2, 5, 10, 10], -3)" ];
|
||||
80 [ color="black" label="(8, [2], [3, 7, 10, 5, 2], -2)" ];
|
||||
81 [ color="black" label="(8, [4], [5, 2, 5, 5, 10], -6)" ];
|
||||
82 [ color="black" label="(9, [1, 3, 4], [3, 10, 5, 10, 10], 0)" ];
|
||||
83 [ color="black" label="(8, [2, 4], [3, 7, 10, 5, 10], 0)" ];
|
||||
84 [ color="black" label="(8, [], [5, 2, 5, 5, 2], -8)" ];
|
||||
85 [ color="black" label="(9, [1, 3], [3, 10, 5, 10, 2], -2)" ];
|
||||
86 [ color="black" label="(9, [4], [5, 2, 4, 5, 10], -3)" ];
|
||||
87 [ color="black" label="(10, [1, 3, 4], [3, 10, 4, 10, 10], 3)" ];
|
||||
88 [ color="black" label="(9, [], [5, 2, 4, 5, 2], -5)" ];
|
||||
89 [ color="black" label="(10, [1, 3], [3, 10, 4, 10, 2], 1)" ];
|
||||
90 [ color="black" label="(10, [2, 3], [5, 2, 10, 10, 2], -4)" ];
|
||||
91 [ color="black" label="(10, [2, 3, 4], [5, 2, 10, 10, 10], -2)" ];
|
||||
92 [ color="black" label="(10, [3], [5, 7, 4, 10, 2], -2)" ];
|
||||
93 [ color="black" label="(10, [3, 4], [5, 7, 4, 10, 10], 0)" ];
|
||||
94 [ color="black" label="(9, [3], [5, 7, 5, 10, 2], -5)" ];
|
||||
95 [ color="black" label="(9, [3, 4], [5, 7, 5, 10, 10], -3)" ];
|
||||
96 [ color="black" label="(5, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
97 [ color="black" label="(2, [1, 3, 4], [5, 10, 6, 10, 10], -3)" ];
|
||||
98 [ color="black" label="(4, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
99 [ color="black" label="(4, [0, 3, 4], [10, 7, 6, 10, 10], -2)" ];
|
||||
100 [ color="black" label="(5, [0, 3, 4], [10, 7, 5, 10, 10], -2)" ];
|
||||
101 [ color="black" label="(9, [0, 4], [10, 7, 6, 5, 10], -4)" ];
|
||||
102 [ color="black" label="(10, [0, 4], [10, 7, 5, 5, 10], -4)" ];
|
||||
103 [ color="black" label="(9, [0], [10, 7, 6, 5, 2], -6)" ];
|
||||
104 [ color="black" label="(10, [0], [10, 7, 5, 5, 2], -6)" ];
|
||||
105 [ color="black" label="(9, [0, 1, 3], [10, 10, 5, 10, 2], -4)" ];
|
||||
106 [ color="black" label="(9, [0, 1, 3, 4], [10, 10, 5, 10, 10], -2)" ];
|
||||
107 [ color="black" label="(10, [0, 1, 3], [10, 10, 4, 10, 2], -1)" ];
|
||||
108 [ color="black" label="(10, [0, 1, 3, 4], [10, 10, 4, 10, 10], 1)" ];
|
||||
109 [ color="black" label="(10, [], [3, 7, 6, 5, 2], -4)" ];
|
||||
110 [ color="black" label="(10, [4], [3, 7, 6, 5, 10], -2)" ];
|
||||
111 [ color="black" label="(8, [1, 3, 4], [5, 10, 5, 10, 10], -3)" ];
|
||||
112 [ color="black" label="(8, [2, 3, 4], [5, 2, 10, 10, 10], -2)" ];
|
||||
113 [ color="black" label="(9, [1, 3, 4], [5, 10, 4, 10, 10], 0)" ];
|
||||
114 [ color="black" label="(8, [1, 3], [5, 10, 5, 10, 2], -5)" ];
|
||||
115 [ color="black" label="(9, [1, 3], [5, 10, 4, 10, 2], -2)" ];
|
||||
116 [ color="black" label="(3, [0, 2, 3, 4], [10, 7, 10, 10, 10], 0)" ];
|
||||
117 [ color="black" label="(8, [2, 3], [5, 2, 10, 10, 2], -4)" ];
|
||||
118 [ color="black" label="(10, [0, 3], [10, 2, 5, 10, 2], -5)" ];
|
||||
119 [ color="black" label="(8, [3, 4], [3, 7, 5, 10, 10], 0)" ];
|
||||
120 [ color="black" label="(10, [2], [5, 7, 10, 5, 2], -5)" ];
|
||||
121 [ color="black" label="(10, [1, 2, 4], [5, 10, 10, 5, 10], -3)" ];
|
||||
122 [ color="black" label="(10, [2, 4], [5, 7, 10, 5, 10], -3)" ];
|
||||
123 [ color="black" label="(10, [1, 2], [5, 10, 10, 5, 2], -5)" ];
|
||||
124 [ color="black" label="(10, [0, 3, 4], [10, 2, 5, 10, 10], -3)" ];
|
||||
125 [ color="black" label="(9, [1, 2, 3], [3, 10, 10, 10, 2], 0)" ];
|
||||
126 [ color="black" label="(9, [1, 2, 3, 4], [3, 10, 10, 10, 10], 2)" ];
|
||||
127 [ color="black" label="(5, [2, 3, 4], [5, 7, 10, 10, 10], -1)" ];
|
||||
128 [ color="black" label="(6, [0, 3], [10, 7, 6, 10, 2], -4)" ];
|
||||
129 [ color="black" label="(7, [0, 3], [10, 7, 5, 10, 2], -4)" ];
|
||||
130 [ color="black" label="(6, [0, 3, 4], [10, 7, 6, 10, 10], -2)" ];
|
||||
131 [ color="black" label="(7, [0, 3, 4], [10, 7, 5, 10, 10], -2)" ];
|
||||
132 [ color="black" label="(9, [1], [3, 10, 4, 5, 2], -1)" ];
|
||||
133 [ color="black" label="(9, [1, 4], [3, 10, 4, 5, 10], 1)" ];
|
||||
134 [ color="black" label="(8, [1], [3, 10, 5, 5, 2], -4)" ];
|
||||
135 [ color="black" label="(8, [1, 4], [3, 10, 5, 5, 10], -2)" ];
|
||||
136 [ color="black" label="(10, [2, 4], [5, 0, 10, 5, 10], -2)" ];
|
||||
137 [ color="black" label="(7, [0, 1, 4], [10, 10, 5, 5, 10], -4)" ];
|
||||
138 [ color="black" label="(7, [0, 1], [10, 10, 5, 5, 2], -6)" ];
|
||||
139 [ color="black" label="(10, [2], [5, 0, 10, 5, 2], -4)" ];
|
||||
140 [ color="black" label="(5, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
141 [ color="black" label="(9, [2, 4], [3, 7, 10, 5, 10], 0)" ];
|
||||
142 [ color="black" label="(6, [0, 3], [10, 7, 5, 10, 2], -4)" ];
|
||||
143 [ color="black" label="(9, [2], [3, 7, 10, 5, 2], -2)" ];
|
||||
144 [ color="black" label="(5, [0, 3, 4], [10, 7, 6, 10, 10], -2)" ];
|
||||
145 [ color="black" label="(6, [0, 3, 4], [10, 7, 5, 10, 10], -2)" ];
|
||||
146 [ color="black" label="(7, [0, 2, 3], [10, 2, 10, 10, 2], -3)" ];
|
||||
147 [ color="black" label="(4, [2, 3, 4], [5, 7, 10, 10, 10], -1)" ];
|
||||
148 [ color="black" label="(8, [0, 2, 4], [10, 7, 10, 5, 10], -2)" ];
|
||||
149 [ color="black" label="(7, [0, 2, 3, 4], [10, 2, 10, 10, 10], -1)" ];
|
||||
150 [ color="black" label="(8, [0, 2], [10, 7, 10, 5, 2], -4)" ];
|
||||
151 [ color="black" label="(10, [3, 4], [3, 0, 4, 10, 10], 4)" ];
|
||||
152 [ color="black" label="(9, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
153 [ color="black" label="(9, [0, 1, 2, 3], [10, 10, 10, 10, 2], -2)" ];
|
||||
154 [ color="black" label="(10, [3], [3, 0, 4, 10, 2], 2)" ];
|
||||
155 [ color="black" label="(7, [4], [5, 2, 5, 5, 10], -6)" ];
|
||||
156 [ color="black" label="(7, [], [5, 2, 5, 5, 2], -8)" ];
|
||||
157 [ color="black" label="(9, [1, 3], [5, 10, 5, 10, 2], -5)" ];
|
||||
158 [ color="black" label="(9, [1, 3, 4], [5, 10, 5, 10, 10], -3)" ];
|
||||
159 [ color="black" label="(9, [2, 3, 4], [5, 2, 10, 10, 10], -2)" ];
|
||||
160 [ color="black" label="(10, [1, 3, 4], [5, 10, 4, 10, 10], 0)" ];
|
||||
161 [ color="black" label="(10, [1, 3], [5, 10, 4, 10, 2], -2)" ];
|
||||
162 [ color="black" label="(9, [2, 3], [5, 2, 10, 10, 2], -4)" ];
|
||||
163 [ color="black" label="(9, [3], [5, 7, 4, 10, 2], -2)" ];
|
||||
164 [ color="black" label="(9, [3, 4], [5, 7, 4, 10, 10], 0)" ];
|
||||
165 [ color="black" label="(8, [3], [5, 7, 5, 10, 2], -5)" ];
|
||||
166 [ color="black" label="(8, [3, 4], [5, 7, 5, 10, 10], -3)" ];
|
||||
167 [ color="black" label="(8, [2, 3, 4], [3, 2, 10, 10, 10], 1)" ];
|
||||
168 [ color="black" label="(8, [2, 3], [3, 2, 10, 10, 2], -1)" ];
|
||||
169 [ color="black" label="(4, [0, 1, 2, 4], [10, 10, 10, 5, 10], -2)" ];
|
||||
170 [ color="black" label="(10, [1, 2, 3], [3, 10, 10, 10, 2], 0)" ];
|
||||
171 [ color="black" label="(10, [1, 2, 3, 4], [3, 10, 10, 10, 10], 2)" ];
|
||||
172 [ color="black" label="(10, [3], [5, 0, 5, 10, 2], -4)" ];
|
||||
173 [ color="black" label="(9, [0, 3], [10, 7, 4, 10, 2], -1)" ];
|
||||
174 [ color="black" label="(9, [0, 3, 4], [10, 7, 4, 10, 10], 1)" ];
|
||||
175 [ color="black" label="(7, [0, 3], [10, 7, 6, 10, 2], -4)" ];
|
||||
176 [ color="black" label="(10, [3, 4], [5, 0, 5, 10, 10], -2)" ];
|
||||
177 [ color="black" label="(8, [0, 3], [10, 7, 5, 10, 2], -4)" ];
|
||||
178 [ color="black" label="(7, [0, 3, 4], [10, 7, 6, 10, 10], -2)" ];
|
||||
179 [ color="black" label="(8, [0, 3, 4], [10, 7, 5, 10, 10], -2)" ];
|
||||
180 [ color="black" label="(10, [0, 2], [10, 7, 10, 5, 2], -4)" ];
|
||||
181 [ color="black" label="(7, [3], [5, 7, 5, 10, 2], -5)" ];
|
||||
182 [ color="black" label="(10, [0, 2, 4], [10, 7, 10, 5, 10], -2)" ];
|
||||
183 [ color="black" label="(8, [3], [3, 7, 6, 10, 2], -2)" ];
|
||||
184 [ color="black" label="(7, [3, 4], [5, 7, 5, 10, 10], -3)" ];
|
||||
185 [ color="black" label="(9, [3], [3, 7, 5, 10, 2], -2)" ];
|
||||
186 [ color="black" label="(10, [3], [3, 7, 4, 10, 2], 1)" ];
|
||||
187 [ color="black" label="(10, [3, 4], [3, 7, 4, 10, 10], 3)" ];
|
||||
188 [ color="black" label="(9, [2, 3], [3, 2, 10, 10, 2], -1)" ];
|
||||
189 [ color="black" label="(7, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
190 [ color="black" label="(7, [0, 1, 2, 3], [10, 10, 10, 10, 2], -2)" ];
|
||||
191 [ color="black" label="(6, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
192 [ color="black" label="(9, [2, 3, 4], [3, 2, 10, 10, 10], 1)" ];
|
||||
193 [ color="black" label="(6, [1, 2, 3], [5, 10, 10, 10, 2], -3)" ];
|
||||
194 [ color="black" label="(7, [2, 3], [5, 2, 10, 10, 2], -4)" ];
|
||||
195 [ color="black" label="(7, [2, 3, 4], [5, 2, 10, 10, 10], -2)" ];
|
||||
196 [ color="black" label="(9, [2], [5, 7, 10, 5, 2], -5)" ];
|
||||
197 [ color="black" label="(8, [0, 2, 3], [10, 2, 10, 10, 2], -3)" ];
|
||||
198 [ color="black" label="(8, [3, 4], [3, 7, 6, 10, 10], 0)" ];
|
||||
199 [ color="black" label="(9, [3, 4], [3, 7, 5, 10, 10], 0)" ];
|
||||
200 [ color="black" label="(10, [3], [3, 0, 5, 10, 2], -1)" ];
|
||||
201 [ color="black" label="(8, [0, 2, 3, 4], [10, 2, 10, 10, 10], -1)" ];
|
||||
202 [ color="black" label="(9, [2, 4], [5, 7, 10, 5, 10], -3)" ];
|
||||
203 [ color="black" label="(8, [1, 2, 3, 4], [3, 10, 10, 10, 10], 2)" ];
|
||||
204 [ color="black" label="(10, [1, 3], [5, 10, 5, 10, 2], -5)" ];
|
||||
205 [ color="black" label="(10, [3, 4], [3, 0, 5, 10, 10], 1)" ];
|
||||
206 [ color="black" label="(10, [1, 3, 4], [5, 10, 5, 10, 10], -3)" ];
|
||||
207 [ color="black" label="(8, [1, 2, 3], [3, 10, 10, 10, 2], 0)" ];
|
||||
208 [ color="black" label="(8, [2], [5, 7, 10, 5, 2], -5)" ];
|
||||
209 [ color="black" label="(8, [4], [3, 2, 5, 5, 10], -3)" ];
|
||||
210 [ color="black" label="(9, [], [3, 2, 4, 5, 2], -2)" ];
|
||||
211 [ color="black" label="(9, [4], [3, 2, 4, 5, 10], 0)" ];
|
||||
212 [ color="black" label="(8, [2, 4], [5, 7, 10, 5, 10], -3)" ];
|
||||
213 [ color="black" label="(5, [1, 4], [5, 10, 5, 5, 10], -5)" ];
|
||||
214 [ color="black" label="(8, [], [3, 2, 5, 5, 2], -5)" ];
|
||||
215 [ color="black" label="(6, [0, 1, 4], [10, 10, 5, 5, 10], -4)" ];
|
||||
216 [ color="black" label="(6, [0, 1], [10, 10, 5, 5, 2], -6)" ];
|
||||
217 [ color="black" label="(10, [2, 4], [3, 7, 10, 5, 10], 0)" ];
|
||||
218 [ color="black" label="(10, [3, 4], [5, 0, 4, 10, 10], 1)" ];
|
||||
219 [ color="black" label="(10, [2], [3, 7, 10, 5, 2], -2)" ];
|
||||
220 [ color="black" label="(4, [0, 2, 3, 4], [10, 7, 10, 10, 10], 0)" ];
|
||||
221 [ color="black" label="(9, [0, 2, 4], [10, 7, 10, 5, 10], -2)" ];
|
||||
222 [ color="black" label="(3, [2, 3, 4], [5, 7, 10, 10, 10], -1)" ];
|
||||
223 [ color="black" label="(9, [3], [3, 7, 4, 10, 2], 1)" ];
|
||||
224 [ color="black" label="(8, [3], [3, 7, 5, 10, 2], -2)" ];
|
||||
225 [ color="black" label="(10, [3], [5, 0, 4, 10, 2], -1)" ];
|
||||
226 [ color="black" label="(10, [0, 3], [10, 0, 5, 10, 2], -3)" ];
|
||||
227 [ color="black" label="(9, [0, 2], [10, 7, 10, 5, 2], -4)" ];
|
||||
228 [ color="black" label="(9, [3, 4], [3, 7, 4, 10, 10], 3)" ];
|
||||
229 [ color="black" label="(7, [0], [10, 2, 5, 5, 2], -7)" ];
|
||||
230 [ color="black" label="(10, [0, 3, 4], [10, 0, 5, 10, 10], -1)" ];
|
||||
231 [ color="black" label="(8, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
232 [ color="black" label="(8, [0, 1, 2, 3], [10, 10, 10, 10, 2], -2)" ];
|
||||
233 [ color="black" label="(7, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
234 [ color="black" label="(7, [0, 4], [10, 2, 5, 5, 10], -5)" ];
|
||||
235 [ color="black" label="(9, [3, 4], [5, 2, 5, 10, 10], -4)" ];
|
||||
236 [ color="black" label="(7, [1, 2, 3], [5, 10, 10, 10, 2], -3)" ];
|
||||
237 [ color="black" label="(9, [3], [5, 2, 5, 10, 2], -6)" ];
|
||||
238 [ color="black" label="(10, [3, 4], [5, 2, 4, 10, 10], -1)" ];
|
||||
239 [ color="black" label="(0, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
240 [ color="black" label="(10, [3], [5, 2, 4, 10, 2], -3)" ];
|
||||
241 [ color="black" label="(9, [0, 2, 3], [10, 2, 10, 10, 2], -3)" ];
|
||||
242 [ color="black" label="(9, [0, 2, 3, 4], [10, 2, 10, 10, 10], -1)" ];
|
||||
243 [ color="black" label="(6, [0, 2, 3, 4], [10, 7, 10, 10, 10], 0)" ];
|
||||
244 [ color="black" label="(3, [0, 1, 3, 4], [10, 10, 6, 10, 10], -2)" ];
|
||||
245 [ color="black" label="(6, [0, 2, 3], [10, 7, 10, 10, 2], -2)" ];
|
||||
246 [ color="black" label="(6, [3], [5, 7, 5, 10, 2], -5)" ];
|
||||
247 [ color="black" label="(6, [3, 4], [5, 7, 5, 10, 10], -3)" ];
|
||||
248 [ color="black" label="(10, [2, 3], [3, 2, 10, 10, 2], -1)" ];
|
||||
249 [ color="black" label="(6, [1, 4], [5, 10, 5, 5, 10], -5)" ];
|
||||
250 [ color="black" label="(6, [1], [5, 10, 5, 5, 2], -7)" ];
|
||||
251 [ color="black" label="(6, [0, 1, 2], [10, 10, 10, 5, 2], -4)" ];
|
||||
252 [ color="black" label="(6, [0, 1, 2, 4], [10, 10, 10, 5, 10], -2)" ];
|
||||
253 [ color="black" label="(10, [2, 3, 4], [3, 2, 10, 10, 10], 1)" ];
|
||||
254 [ color="black" label="(10, [0, 1, 4], [10, 10, 5, 5, 10], -4)" ];
|
||||
255 [ color="black" label="(5, [3, 4], [5, 7, 5, 10, 10], -3)" ];
|
||||
256 [ color="black" label="(10, [0, 3], [10, 0, 4, 10, 2], 0)" ];
|
||||
257 [ color="black" label="(10, [0, 3, 4], [10, 0, 4, 10, 10], 2)" ];
|
||||
258 [ color="black" label="(8, [0], [10, 2, 5, 5, 2], -7)" ];
|
||||
259 [ color="black" label="(9, [3], [3, 7, 6, 10, 2], -2)" ];
|
||||
260 [ color="black" label="(10, [3], [3, 7, 5, 10, 2], -2)" ];
|
||||
261 [ color="black" label="(9, [0, 4], [10, 2, 4, 5, 10], -2)" ];
|
||||
262 [ color="black" label="(9, [3, 4], [3, 7, 6, 10, 10], 0)" ];
|
||||
263 [ color="black" label="(10, [3, 4], [3, 7, 5, 10, 10], 0)" ];
|
||||
264 [ color="black" label="(9, [0], [10, 2, 4, 5, 2], -4)" ];
|
||||
265 [ color="black" label="(10, [0, 1], [10, 10, 5, 5, 2], -6)" ];
|
||||
266 [ color="black" label="(8, [1, 2, 3], [5, 10, 10, 10, 2], -3)" ];
|
||||
267 [ color="black" label="(8, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
268 [ color="black" label="(8, [0, 4], [10, 2, 5, 5, 10], -5)" ];
|
||||
269 [ color="black" label="(10, [3, 4], [5, 2, 5, 10, 10], -4)" ];
|
||||
270 [ color="black" label="(10, [3], [5, 2, 5, 10, 2], -6)" ];
|
||||
271 [ color="black" label="(10, [0, 3], [10, 7, 4, 10, 2], -1)" ];
|
||||
272 [ color="black" label="(10, [0, 3, 4], [10, 7, 4, 10, 10], 1)" ];
|
||||
273 [ color="black" label="(1, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
274 [ color="black" label="(8, [0, 3], [10, 7, 6, 10, 2], -4)" ];
|
||||
275 [ color="black" label="(7, [2, 4], [5, 7, 10, 5, 10], -3)" ];
|
||||
276 [ color="black" label="(9, [0, 3], [10, 7, 5, 10, 2], -4)" ];
|
||||
277 [ color="black" label="(9, [4], [3, 2, 5, 5, 10], -3)" ];
|
||||
278 [ color="black" label="(8, [0, 3, 4], [10, 7, 6, 10, 10], -2)" ];
|
||||
279 [ color="black" label="(7, [2], [5, 7, 10, 5, 2], -5)" ];
|
||||
280 [ color="black" label="(9, [0, 3, 4], [10, 7, 5, 10, 10], -2)" ];
|
||||
281 [ color="black" label="(10, [0, 2, 3, 4], [10, 2, 10, 10, 10], -1)" ];
|
||||
282 [ color="black" label="(10, [0, 2, 3], [10, 2, 10, 10, 2], -3)" ];
|
||||
283 [ color="black" label="(10, [], [3, 2, 4, 5, 2], -2)" ];
|
||||
284 [ color="black" label="(5, [0, 1, 3, 4], [10, 10, 5, 10, 10], -2)" ];
|
||||
285 [ color="black" label="(10, [4], [3, 2, 4, 5, 10], 0)" ];
|
||||
286 [ color="black" label="(9, [], [3, 2, 5, 5, 2], -5)" ];
|
||||
287 [ color="black" label="(5, [0, 2, 3, 4], [10, 7, 10, 10, 10], 0)" ];
|
||||
288 [ color="black" label="(9, [1, 4], [3, 10, 5, 5, 10], -2)" ];
|
||||
289 [ color="black" label="(9, [1], [3, 10, 5, 5, 2], -4)" ];
|
||||
290 [ color="black" label="(10, [1, 4], [3, 10, 4, 5, 10], 1)" ];
|
||||
291 [ color="black" label="(10, [1], [3, 10, 4, 5, 2], -1)" ];
|
||||
292 [ color="black" label="(10, [], [3, 2, 5, 5, 2], -5)" ];
|
||||
293 [ color="black" label="(6, [2, 4], [5, 7, 10, 5, 10], -3)" ];
|
||||
294 [ color="black" label="(10, [4], [3, 2, 5, 5, 10], -3)" ];
|
||||
295 [ color="black" label="(6, [2], [5, 7, 10, 5, 2], -5)" ];
|
||||
296 [ color="black" label="(8, [2, 3], [3, 7, 10, 10, 2], 0)" ];
|
||||
297 [ color="black" label="(10, [0, 3, 4], [10, 7, 6, 10, 10], -2)" ];
|
||||
298 [ color="black" label="(10, [0, 3], [10, 7, 6, 10, 2], -4)" ];
|
||||
299 [ color="black" label="(7, [1, 4], [5, 10, 5, 5, 10], -5)" ];
|
||||
300 [ color="black" label="(7, [1], [5, 10, 5, 5, 2], -7)" ];
|
||||
301 [ color="black" label="(8, [0, 1, 4], [10, 10, 5, 5, 10], -4)" ];
|
||||
302 [ color="black" label="(9, [0, 1, 4], [10, 10, 4, 5, 10], -1)" ];
|
||||
303 [ color="black" label="(10, [0, 2], [10, 0, 10, 5, 2], -3)" ];
|
||||
304 [ color="black" label="(8, [0, 1], [10, 10, 5, 5, 2], -6)" ];
|
||||
305 [ color="black" label="(9, [0, 1], [10, 10, 4, 5, 2], -3)" ];
|
||||
306 [ color="black" label="(10, [0, 2, 4], [10, 0, 10, 5, 10], -1)" ];
|
||||
307 [ color="black" label="(8, [3, 4], [5, 2, 5, 10, 10], -4)" ];
|
||||
308 [ color="black" label="(8, [3], [5, 2, 5, 10, 2], -6)" ];
|
||||
309 [ color="black" label="(10, [], [5, 7, 5, 5, 2], -7)" ];
|
||||
310 [ color="black" label="(9, [3, 4], [5, 2, 4, 10, 10], -1)" ];
|
||||
311 [ color="black" label="(9, [3], [5, 2, 4, 10, 2], -3)" ];
|
||||
312 [ color="black" label="(8, [2, 3, 4], [3, 7, 10, 10, 10], 2)" ];
|
||||
313 [ color="black" label="(10, [0, 4], [10, 2, 4, 5, 10], -2)" ];
|
||||
314 [ color="black" label="(10, [0], [10, 2, 4, 5, 2], -4)" ];
|
||||
315 [ color="black" label="(10, [0, 1, 2, 3], [10, 10, 10, 10, 2], -2)" ];
|
||||
316 [ color="black" label="(10, [4], [5, 7, 5, 5, 10], -5)" ];
|
||||
317 [ color="black" label="(7, [0, 2, 3, 4], [10, 7, 10, 10, 10], 0)" ];
|
||||
318 [ color="black" label="(2, [0, 1, 3, 4], [10, 10, 6, 10, 10], -2)" ];
|
||||
319 [ color="black" label="(9, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
320 [ color="black" label="(7, [0, 2, 3], [10, 7, 10, 10, 2], -2)" ];
|
||||
321 [ color="black" label="(9, [1, 2, 3], [5, 10, 10, 10, 2], -3)" ];
|
||||
322 [ color="black" label="(10, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
323 [ color="black" label="(9, [0, 4], [10, 2, 5, 5, 10], -5)" ];
|
||||
324 [ color="black" label="(9, [0], [10, 2, 5, 5, 2], -7)" ];
|
||||
325 [ color="black" label="(10, [], [5, 7, 4, 5, 2], -4)" ];
|
||||
326 [ color="black" label="(10, [4], [5, 7, 4, 5, 10], -2)" ];
|
||||
327 [ color="black" label="(9, [], [5, 7, 5, 5, 2], -7)" ];
|
||||
328 [ color="black" label="(10, [2, 4], [5, 2, 10, 5, 10], -4)" ];
|
||||
329 [ color="black" label="(4, [1, 2, 4], [5, 10, 10, 5, 10], -3)" ];
|
||||
330 [ color="black" label="(9, [4], [5, 7, 5, 5, 10], -5)" ];
|
||||
331 [ color="black" label="(5, [0, 1, 2, 4], [10, 10, 10, 5, 10], -2)" ];
|
||||
332 [ color="black" label="(10, [2], [5, 2, 10, 5, 2], -6)" ];
|
||||
333 [ color="black" label="(10, [1], [3, 10, 5, 5, 2], -4)" ];
|
||||
334 [ color="black" label="(9, [0, 1, 4], [10, 10, 5, 5, 10], -4)" ];
|
||||
335 [ color="black" label="(3, [3, 4], [5, 7, 6, 10, 10], -3)" ];
|
||||
336 [ color="black" label="(10, [1, 4], [3, 10, 5, 5, 10], -2)" ];
|
||||
337 [ color="black" label="(10, [3], [3, 7, 6, 10, 2], -2)" ];
|
||||
338 [ color="black" label="(4, [0, 4], [10, 7, 6, 5, 10], -4)" ];
|
||||
339 [ color="black" label="(5, [0, 4], [10, 7, 5, 5, 10], -4)" ];
|
||||
340 [ color="black" label="(10, [3, 4], [3, 7, 6, 10, 10], 0)" ];
|
||||
341 [ color="black" label="(9, [0, 3, 4], [10, 7, 6, 10, 10], -2)" ];
|
||||
342 [ color="black" label="(10, [0, 3, 4], [10, 7, 5, 10, 10], -2)" ];
|
||||
343 [ color="black" label="(8, [1, 4], [5, 10, 5, 5, 10], -5)" ];
|
||||
344 [ color="black" label="(9, [0, 3], [10, 7, 6, 10, 2], -4)" ];
|
||||
345 [ color="black" label="(9, [1, 4], [5, 10, 4, 5, 10], -2)" ];
|
||||
346 [ color="black" label="(10, [0, 3], [10, 7, 5, 10, 2], -4)" ];
|
||||
347 [ color="black" label="(8, [1], [5, 10, 5, 5, 2], -7)" ];
|
||||
348 [ color="black" label="(9, [1], [5, 10, 4, 5, 2], -4)" ];
|
||||
349 [ color="black" label="(10, [0, 1, 4], [10, 10, 4, 5, 10], -1)" ];
|
||||
350 [ color="black" label="(9, [0, 1], [10, 10, 5, 5, 2], -6)" ];
|
||||
351 [ color="black" label="(10, [0, 1], [10, 10, 4, 5, 2], -3)" ];
|
||||
352 [ color="black" label="(10, [2, 3], [5, 7, 10, 10, 2], -3)" ];
|
||||
353 [ color="black" label="(10, [2, 3, 4], [5, 7, 10, 10, 10], -1)" ];
|
||||
354 [ color="black" label="(9, [4], [3, 7, 4, 5, 10], 1)" ];
|
||||
355 [ color="black" label="(10, [2, 3], [3, 0, 10, 10, 2], 1)" ];
|
||||
356 [ color="black" label="(3, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
357 [ color="black" label="(9, [], [3, 7, 4, 5, 2], -1)" ];
|
||||
358 [ color="black" label="(8, [4], [3, 7, 5, 5, 10], -2)" ];
|
||||
359 [ color="black" label="(10, [2, 3, 4], [3, 0, 10, 10, 10], 3)" ];
|
||||
360 [ color="black" label="(8, [2], [5, 2, 10, 5, 2], -6)" ];
|
||||
361 [ color="black" label="(10, [1, 2, 3], [5, 10, 10, 10, 2], -3)" ];
|
||||
362 [ color="black" label="(8, [], [3, 7, 5, 5, 2], -4)" ];
|
||||
363 [ color="black" label="(8, [2, 4], [5, 2, 10, 5, 10], -4)" ];
|
||||
364 [ color="black" label="(10, [0, 4], [10, 2, 5, 5, 10], -5)" ];
|
||||
365 [ color="black" label="(10, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
366 [ color="black" label="(10, [0], [10, 2, 5, 5, 2], -7)" ];
|
||||
367 [ color="black" label="(10, [2, 3], [5, 0, 10, 10, 2], -2)" ];
|
||||
368 [ color="black" label="(10, [2, 3, 4], [5, 0, 10, 10, 10], 0)" ];
|
||||
369 [ color="black" label="(5, [2, 4], [5, 7, 10, 5, 10], -3)" ];
|
||||
370 [ color="black" label="(6, [0], [10, 7, 6, 5, 2], -6)" ];
|
||||
371 [ color="black" label="(7, [0], [10, 7, 5, 5, 2], -6)" ];
|
||||
372 [ color="black" label="(7, [0, 1, 3, 4], [10, 10, 5, 10, 10], -2)" ];
|
||||
373 [ color="black" label="(6, [0, 4], [10, 7, 6, 5, 10], -4)" ];
|
||||
374 [ color="black" label="(7, [0, 4], [10, 7, 5, 5, 10], -4)" ];
|
||||
375 [ color="black" label="(5, [1, 2, 4], [5, 10, 10, 5, 10], -3)" ];
|
||||
376 [ color="black" label="(7, [0, 1, 3], [10, 10, 5, 10, 2], -4)" ];
|
||||
377 [ color="black" label="(9, [0, 1, 2, 4], [10, 10, 10, 5, 10], -2)" ];
|
||||
378 [ color="black" label="(4, [2, 4], [5, 7, 10, 5, 10], -3)" ];
|
||||
379 [ color="black" label="(7, [3, 4], [5, 2, 5, 10, 10], -4)" ];
|
||||
380 [ color="black" label="(7, [3], [5, 2, 5, 10, 2], -6)" ];
|
||||
381 [ color="black" label="(9, [2, 3, 4], [3, 7, 10, 10, 10], 2)" ];
|
||||
382 [ color="black" label="(6, [0], [10, 7, 5, 5, 2], -6)" ];
|
||||
383 [ color="black" label="(9, [2, 3], [3, 7, 10, 10, 2], 0)" ];
|
||||
384 [ color="black" label="(5, [0, 4], [10, 7, 6, 5, 10], -4)" ];
|
||||
385 [ color="black" label="(6, [0, 4], [10, 7, 5, 5, 10], -4)" ];
|
||||
386 [ color="black" label="(9, [1, 3, 4], [3, 10, 4, 10, 10], 3)" ];
|
||||
387 [ color="black" label="(9, [1, 4], [5, 10, 5, 5, 10], -5)" ];
|
||||
388 [ color="black" label="(8, [1, 3], [3, 10, 5, 10, 2], -2)" ];
|
||||
389 [ color="black" label="(7, [0, 2], [10, 2, 10, 5, 2], -5)" ];
|
||||
390 [ color="black" label="(9, [1], [5, 10, 5, 5, 2], -7)" ];
|
||||
391 [ color="black" label="(8, [0, 2, 3, 4], [10, 7, 10, 10, 10], 0)" ];
|
||||
392 [ color="black" label="(8, [1, 3, 4], [3, 10, 5, 10, 10], 0)" ];
|
||||
393 [ color="black" label="(8, [0, 2, 3], [10, 7, 10, 10, 2], -2)" ];
|
||||
394 [ color="black" label="(10, [1, 4], [5, 10, 4, 5, 10], -2)" ];
|
||||
395 [ color="black" label="(10, [], [3, 0, 4, 5, 2], 0)" ];
|
||||
396 [ color="black" label="(10, [1], [5, 10, 4, 5, 2], -4)" ];
|
||||
397 [ color="black" label="(10, [4], [3, 0, 4, 5, 10], 2)" ];
|
||||
398 [ color="black" label="(7, [0, 2, 4], [10, 2, 10, 5, 10], -3)" ];
|
||||
399 [ color="black" label="(9, [0, 1, 2], [10, 10, 10, 5, 2], -4)" ];
|
||||
400 [ color="black" label="(9, [1, 3], [3, 10, 4, 10, 2], 1)" ];
|
||||
401 [ color="black" label="(9, [], [5, 7, 4, 5, 2], -4)" ];
|
||||
402 [ color="black" label="(9, [4], [5, 7, 4, 5, 10], -2)" ];
|
||||
403 [ color="black" label="(8, [], [5, 7, 5, 5, 2], -7)" ];
|
||||
404 [ color="black" label="(8, [4], [5, 7, 5, 5, 10], -5)" ];
|
||||
405 [ color="black" label="(8, [2, 4], [3, 2, 10, 5, 10], -1)" ];
|
||||
406 [ color="black" label="(10, [0, 2, 3, 4], [10, 0, 10, 10, 10], 1)" ];
|
||||
407 [ color="black" label="(10, [0, 2, 3], [10, 0, 10, 10, 2], -1)" ];
|
||||
408 [ color="black" label="(4, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
409 [ color="black" label="(9, [2], [5, 2, 10, 5, 2], -6)" ];
|
||||
410 [ color="black" label="(8, [2], [3, 2, 10, 5, 2], -3)" ];
|
||||
411 [ color="black" label="(9, [2, 4], [5, 2, 10, 5, 10], -4)" ];
|
||||
412 [ color="black" label="(8, [1, 2, 4], [3, 10, 10, 5, 10], 0)" ];
|
||||
413 [ color="black" label="(8, [1, 2], [3, 10, 10, 5, 2], -2)" ];
|
||||
414 [ color="black" label="(9, [2, 4], [3, 2, 10, 5, 10], -1)" ];
|
||||
415 [ color="black" label="(7, [], [5, 7, 5, 5, 2], -7)" ];
|
||||
416 [ color="black" label="(9, [2], [3, 2, 10, 5, 2], -3)" ];
|
||||
417 [ color="black" label="(7, [4], [5, 7, 5, 5, 10], -5)" ];
|
||||
418 [ color="black" label="(9, [0], [10, 7, 4, 5, 2], -3)" ];
|
||||
419 [ color="black" label="(9, [0, 4], [10, 7, 4, 5, 10], -1)" ];
|
||||
420 [ color="black" label="(7, [0], [10, 7, 6, 5, 2], -6)" ];
|
||||
421 [ color="black" label="(8, [0], [10, 7, 5, 5, 2], -6)" ];
|
||||
422 [ color="black" label="(10, [0, 2, 3, 4], [10, 7, 10, 10, 10], 0)" ];
|
||||
423 [ color="black" label="(7, [0, 4], [10, 7, 6, 5, 10], -4)" ];
|
||||
424 [ color="black" label="(8, [0, 4], [10, 7, 5, 5, 10], -4)" ];
|
||||
425 [ color="black" label="(6, [1, 2], [5, 10, 10, 5, 2], -5)" ];
|
||||
426 [ color="black" label="(6, [1, 2, 4], [5, 10, 10, 5, 10], -3)" ];
|
||||
427 [ color="black" label="(10, [0, 2, 3], [10, 7, 10, 10, 2], -2)" ];
|
||||
428 [ color="black" label="(7, [0, 1, 2], [10, 10, 10, 5, 2], -4)" ];
|
||||
429 [ color="black" label="(7, [0, 1, 2, 4], [10, 10, 10, 5, 10], -2)" ];
|
||||
430 [ color="black" label="(10, [4], [5, 0, 5, 5, 10], -4)" ];
|
||||
431 [ color="black" label="(10, [], [5, 0, 5, 5, 2], -6)" ];
|
||||
432 [ color="black" label="(9, [2, 3, 4], [5, 7, 10, 10, 10], -1)" ];
|
||||
433 [ color="black" label="(9, [2, 3], [5, 7, 10, 10, 2], -3)" ];
|
||||
434 [ color="black" label="(10, [], [3, 0, 5, 5, 2], -3)" ];
|
||||
435 [ color="black" label="(10, [4], [3, 0, 5, 5, 10], -1)" ];
|
||||
436 [ color="black" label="(10, [1, 4], [5, 10, 5, 5, 10], -5)" ];
|
||||
437 [ color="black" label="(10, [], [3, 7, 4, 5, 2], -1)" ];
|
||||
438 [ color="black" label="(2, [0, 1, 2, 3, 4], [10, 10, 10, 10, 10], 0)" ];
|
||||
439 [ color="black" label="(10, [1], [5, 10, 5, 5, 2], -7)" ];
|
||||
440 [ color="black" label="(7, [2, 4], [5, 2, 10, 5, 10], -4)" ];
|
||||
441 [ color="black" label="(8, [4], [3, 7, 6, 5, 10], -2)" ];
|
||||
442 [ color="black" label="(9, [4], [3, 7, 5, 5, 10], -2)" ];
|
||||
443 [ color="black" label="(10, [4], [3, 7, 4, 5, 10], 1)" ];
|
||||
444 [ color="black" label="(8, [], [3, 7, 6, 5, 2], -4)" ];
|
||||
445 [ color="black" label="(9, [], [3, 7, 5, 5, 2], -4)" ];
|
||||
446 [ color="black" label="(8, [0, 2], [10, 2, 10, 5, 2], -5)" ];
|
||||
447 [ color="black" label="(7, [2], [5, 2, 10, 5, 2], -6)" ];
|
||||
448 [ color="black" label="(8, [0, 2, 4], [10, 2, 10, 5, 10], -3)" ];
|
||||
449 [ color="black" label="(8, [2, 3, 4], [5, 7, 10, 10, 10], -1)" ];
|
||||
450 [ color="black" label="(8, [2, 3], [5, 7, 10, 10, 2], -3)" ];
|
||||
451 [ color="black" label="(1, [1, 2, 3, 4], [5, 10, 10, 10, 10], -1)" ];
|
||||
452 [ color="black" label="(6, [0, 1, 3, 4], [10, 10, 5, 10, 10], -2)" ];
|
||||
453 [ color="black" label="(6, [0, 1, 3], [10, 10, 5, 10, 2], -4)" ];
|
||||
454 [ color="black" label="(9, [3], [3, 2, 4, 10, 2], 0)" ];
|
||||
455 [ color="black" label="(9, [3, 4], [3, 2, 4, 10, 10], 2)" ];
|
||||
456 [ color="black" label="(8, [3], [3, 2, 5, 10, 2], -3)" ];
|
||||
457 [ color="black" label="(8, [3, 4], [3, 2, 5, 10, 10], -1)" ];
|
||||
458 [ color="black" label="(5, [1, 3, 4], [5, 10, 5, 10, 10], -3)" ];
|
||||
459 [ color="black" label="(9, [1, 2], [3, 10, 10, 5, 2], -2)" ];
|
||||
460 [ color="black" label="(8, [0, 1, 2, 4], [10, 10, 10, 5, 10], -2)" ];
|
||||
461 [ color="black" label="(7, [0, 3, 4], [10, 2, 5, 10, 10], -3)" ];
|
||||
462 [ color="black" label="(7, [0, 3], [10, 2, 5, 10, 2], -5)" ];
|
||||
463 [ color="black" label="(10, [2, 3, 4], [3, 7, 10, 10, 10], 2)" ];
|
||||
464 [ color="black" label="(9, [1, 2, 4], [3, 10, 10, 5, 10], 0)" ];
|
||||
465 [ color="black" label="(10, [2, 3], [3, 7, 10, 10, 2], 0)" ];
|
||||
466 [ color="black" label="(4, [0, 2, 4], [10, 7, 10, 5, 10], -2)" ];
|
||||
467 [ color="black" label="(9, [0, 2, 3], [10, 7, 10, 10, 2], -2)" ];
|
||||
468 [ color="black" label="(7, [1, 2], [5, 10, 10, 5, 2], -5)" ];
|
||||
469 [ color="black" label="(9, [0, 2, 3, 4], [10, 7, 10, 10, 10], 0)" ];
|
||||
470 [ color="black" label="(7, [1, 2, 4], [5, 10, 10, 5, 10], -3)" ];
|
||||
471 [ color="black" label="(10, [4], [5, 0, 4, 5, 10], -1)" ];
|
||||
472 [ color="black" label="(10, [0, 4], [10, 0, 5, 5, 10], -3)" ];
|
||||
473 [ color="black" label="(10, [], [5, 0, 4, 5, 2], -3)" ];
|
||||
474 [ color="black" label="(8, [0, 1, 2], [10, 10, 10, 5, 2], -4)" ];
|
||||
475 [ color="black" label="(10, [0], [10, 0, 5, 5, 2], -5)" ];
|
||||
318 -> 1 [ label="1" ];
|
||||
38 -> 2 [ label="0" ];
|
||||
38 -> 3 [ label="1" ];
|
||||
81 -> 4 [ label="0" ];
|
||||
82 -> 5 [ label="0" ];
|
||||
84 -> 6 [ label="0" ];
|
||||
85 -> 7 [ label="0" ];
|
||||
86 -> 8 [ label="0" ];
|
||||
446 -> 9 [ label="0" ];
|
||||
88 -> 10 [ label="0" ];
|
||||
448 -> 11 [ label="0" ];
|
||||
451 -> 12 [ label="0" ];
|
||||
21 -> 13 [ label="1" ];
|
||||
21 -> 14 [ label="0" ];
|
||||
416 -> 15 [ label="0" ];
|
||||
414 -> 16 [ label="0" ];
|
||||
96 -> 17 [ label="0" ];
|
||||
96 -> 18 [ label="1" ];
|
||||
458 -> 19 [ label="0" ];
|
||||
458 -> 20 [ label="1" ];
|
||||
378 -> 21 [ label="1" ];
|
||||
461 -> 22 [ label="0" ];
|
||||
462 -> 23 [ label="0" ];
|
||||
201 -> 24 [ label="1" ];
|
||||
197 -> 25 [ label="1" ];
|
||||
470 -> 26 [ label="0" ];
|
||||
105 -> 27 [ label="0" ];
|
||||
106 -> 28 [ label="0" ];
|
||||
302 -> 29 [ label="1" ];
|
||||
468 -> 30 [ label="0" ];
|
||||
305 -> 31 [ label="1" ];
|
||||
444 -> 32 [ label="0" ];
|
||||
445 -> 33 [ label="0" ];
|
||||
441 -> 34 [ label="0" ];
|
||||
442 -> 35 [ label="0" ];
|
||||
56 -> 36 [ label="0" ];
|
||||
57 -> 37 [ label="0" ];
|
||||
466 -> 38 [ label="0" ];
|
||||
418 -> 39 [ label="0" ];
|
||||
419 -> 40 [ label="0" ];
|
||||
420 -> 41 [ label="0" ];
|
||||
421 -> 42 [ label="0" ];
|
||||
423 -> 43 [ label="0" ];
|
||||
424 -> 44 [ label="0" ];
|
||||
4 -> 45 [ label="0" ];
|
||||
9 -> 46 [ label="0" ];
|
||||
454 -> 47 [ label="0" ];
|
||||
6 -> 48 [ label="0" ];
|
||||
169 -> 49 [ label="1" ];
|
||||
455 -> 50 [ label="0" ];
|
||||
97 -> 51 [ label="0" ];
|
||||
456 -> 52 [ label="0" ];
|
||||
457 -> 53 [ label="0" ];
|
||||
11 -> 54 [ label="0" ];
|
||||
12 -> 55 [ label="0" ];
|
||||
127 -> 56 [ label="0" ];
|
||||
127 -> 57 [ label="1" ];
|
||||
101 -> 58 [ label="0" ];
|
||||
103 -> 59 [ label="0" ];
|
||||
372 -> 60 [ label="0" ];
|
||||
231 -> 61 [ label="1" ];
|
||||
376 -> 62 [ label="0" ];
|
||||
232 -> 63 [ label="1" ];
|
||||
19 -> 64 [ label="0" ];
|
||||
52 -> 65 [ label="0" ];
|
||||
53 -> 66 [ label="0" ];
|
||||
95 -> 67 [ label="0" ];
|
||||
20 -> 68 [ label="0" ];
|
||||
377 -> 69 [ label="0" ];
|
||||
94 -> 70 [ label="0" ];
|
||||
399 -> 71 [ label="0" ];
|
||||
23 -> 72 [ label="0" ];
|
||||
24 -> 73 [ label="0" ];
|
||||
2 -> 74 [ label="0" ];
|
||||
25 -> 75 [ label="0" ];
|
||||
3 -> 76 [ label="0" ];
|
||||
30 -> 77 [ label="0" ];
|
||||
26 -> 78 [ label="0" ];
|
||||
22 -> 79 [ label="0" ];
|
||||
76 -> 80 [ label="1" ];
|
||||
155 -> 81 [ label="0" ];
|
||||
392 -> 82 [ label="0" ];
|
||||
74 -> 83 [ label="1" ];
|
||||
156 -> 84 [ label="0" ];
|
||||
388 -> 85 [ label="0" ];
|
||||
363 -> 86 [ label="1" ];
|
||||
386 -> 87 [ label="0" ];
|
||||
360 -> 88 [ label="1" ];
|
||||
400 -> 89 [ label="0" ];
|
||||
162 -> 90 [ label="0" ];
|
||||
159 -> 91 [ label="0" ];
|
||||
163 -> 92 [ label="0" ];
|
||||
164 -> 93 [ label="0" ];
|
||||
165 -> 94 [ label="0" ];
|
||||
166 -> 95 [ label="0" ];
|
||||
408 -> 96 [ label="0" ];
|
||||
451 -> 97 [ label="1" ];
|
||||
55 -> 98 [ label="0" ];
|
||||
1 -> 99 [ label="0" ];
|
||||
220 -> 100 [ label="1" ];
|
||||
43 -> 101 [ label="0" ];
|
||||
44 -> 102 [ label="0" ];
|
||||
41 -> 103 [ label="0" ];
|
||||
42 -> 104 [ label="0" ];
|
||||
62 -> 105 [ label="0" ];
|
||||
60 -> 106 [ label="0" ];
|
||||
63 -> 107 [ label="0" ];
|
||||
61 -> 108 [ label="0" ];
|
||||
32 -> 109 [ label="0" ];
|
||||
34 -> 110 [ label="0" ];
|
||||
64 -> 111 [ label="0" ];
|
||||
195 -> 112 [ label="0" ];
|
||||
267 -> 113 [ label="1" ];
|
||||
68 -> 114 [ label="0" ];
|
||||
266 -> 115 [ label="1" ];
|
||||
438 -> 116 [ label="1" ];
|
||||
194 -> 117 [ label="0" ];
|
||||
72 -> 118 [ label="0" ];
|
||||
131 -> 119 [ label="1" ];
|
||||
196 -> 120 [ label="0" ];
|
||||
78 -> 121 [ label="0" ];
|
||||
202 -> 122 [ label="0" ];
|
||||
77 -> 123 [ label="0" ];
|
||||
79 -> 124 [ label="0" ];
|
||||
207 -> 125 [ label="0" ];
|
||||
203 -> 126 [ label="0" ];
|
||||
147 -> 127 [ label="0" ];
|
||||
144 -> 128 [ label="1" ];
|
||||
142 -> 129 [ label="0" ];
|
||||
144 -> 130 [ label="0" ];
|
||||
145 -> 131 [ label="0" ];
|
||||
413 -> 132 [ color="red" label="1" ];
|
||||
412 -> 133 [ label="1" ];
|
||||
138 -> 134 [ label="1" ];
|
||||
137 -> 135 [ label="1" ];
|
||||
78 -> 136 [ label="1" ];
|
||||
215 -> 137 [ label="0" ];
|
||||
216 -> 138 [ label="0" ];
|
||||
77 -> 139 [ label="1" ];
|
||||
98 -> 140 [ label="0" ];
|
||||
83 -> 141 [ label="0" ];
|
||||
100 -> 142 [ label="1" ];
|
||||
80 -> 143 [ label="0" ];
|
||||
99 -> 144 [ label="0" ];
|
||||
100 -> 145 [ label="0" ];
|
||||
18 -> 146 [ label="1" ];
|
||||
222 -> 147 [ label="0" ];
|
||||
74 -> 148 [ label="0" ];
|
||||
17 -> 149 [ label="1" ];
|
||||
76 -> 150 [ label="0" ];
|
||||
386 -> 151 [ label="1" ];
|
||||
231 -> 152 [ label="0" ];
|
||||
232 -> 153 [ label="0" ];
|
||||
400 -> 154 [ label="1" ];
|
||||
249 -> 155 [ label="1" ];
|
||||
250 -> 156 [ label="1" ];
|
||||
114 -> 157 [ label="0" ];
|
||||
111 -> 158 [ label="0" ];
|
||||
112 -> 159 [ label="0" ];
|
||||
113 -> 160 [ label="0" ];
|
||||
115 -> 161 [ label="0" ];
|
||||
117 -> 162 [ label="0" ];
|
||||
450 -> 163 [ label="1" ];
|
||||
449 -> 164 [ label="1" ];
|
||||
181 -> 165 [ label="0" ];
|
||||
184 -> 166 [ label="0" ];
|
||||
149 -> 167 [ label="1" ];
|
||||
146 -> 168 [ label="1" ];
|
||||
356 -> 169 [ color="red" label="1" ];
|
||||
125 -> 170 [ label="0" ];
|
||||
126 -> 171 [ label="0" ];
|
||||
157 -> 172 [ label="1" ];
|
||||
393 -> 173 [ label="1" ];
|
||||
391 -> 174 [ label="1" ];
|
||||
128 -> 175 [ label="0" ];
|
||||
158 -> 176 [ label="1" ];
|
||||
129 -> 177 [ label="0" ];
|
||||
130 -> 178 [ label="0" ];
|
||||
131 -> 179 [ label="0" ];
|
||||
227 -> 180 [ label="0" ];
|
||||
246 -> 181 [ label="0" ];
|
||||
221 -> 182 [ label="0" ];
|
||||
175 -> 183 [ label="1" ];
|
||||
247 -> 184 [ label="0" ];
|
||||
224 -> 185 [ label="0" ];
|
||||
223 -> 186 [ label="0" ];
|
||||
228 -> 187 [ label="0" ];
|
||||
168 -> 188 [ label="0" ];
|
||||
17 -> 189 [ label="0" ];
|
||||
18 -> 190 [ label="0" ];
|
||||
140 -> 191 [ label="0" ];
|
||||
167 -> 192 [ label="0" ];
|
||||
140 -> 193 [ label="1" ];
|
||||
193 -> 194 [ label="1" ];
|
||||
191 -> 195 [ label="1" ];
|
||||
208 -> 196 [ label="0" ];
|
||||
146 -> 197 [ label="0" ];
|
||||
178 -> 198 [ label="1" ];
|
||||
119 -> 199 [ label="0" ];
|
||||
85 -> 200 [ label="1" ];
|
||||
149 -> 201 [ label="0" ];
|
||||
212 -> 202 [ label="0" ];
|
||||
189 -> 203 [ label="1" ];
|
||||
157 -> 204 [ label="0" ];
|
||||
82 -> 205 [ label="1" ];
|
||||
158 -> 206 [ label="0" ];
|
||||
190 -> 207 [ label="1" ];
|
||||
279 -> 208 [ label="0" ];
|
||||
234 -> 209 [ label="1" ];
|
||||
410 -> 210 [ label="1" ];
|
||||
405 -> 211 [ label="1" ];
|
||||
275 -> 212 [ label="0" ];
|
||||
329 -> 213 [ label="1" ];
|
||||
229 -> 214 [ label="1" ];
|
||||
49 -> 215 [ label="0" ];
|
||||
49 -> 216 [ label="1" ];
|
||||
141 -> 217 [ label="0" ];
|
||||
113 -> 218 [ label="1" ];
|
||||
143 -> 219 [ label="0" ];
|
||||
116 -> 220 [ label="0" ];
|
||||
148 -> 221 [ label="0" ];
|
||||
12 -> 222 [ label="1" ];
|
||||
296 -> 223 [ label="1" ];
|
||||
129 -> 224 [ label="1" ];
|
||||
115 -> 225 [ label="1" ];
|
||||
105 -> 226 [ label="1" ];
|
||||
150 -> 227 [ label="0" ];
|
||||
312 -> 228 [ label="1" ];
|
||||
216 -> 229 [ label="1" ];
|
||||
106 -> 230 [ label="1" ];
|
||||
189 -> 231 [ label="0" ];
|
||||
190 -> 232 [ label="0" ];
|
||||
191 -> 233 [ label="0" ];
|
||||
215 -> 234 [ label="1" ];
|
||||
307 -> 235 [ label="0" ];
|
||||
193 -> 236 [ label="0" ];
|
||||
308 -> 237 [ label="0" ];
|
||||
310 -> 238 [ label="0" ];
|
||||
311 -> 240 [ label="0" ];
|
||||
197 -> 241 [ label="0" ];
|
||||
201 -> 242 [ label="0" ];
|
||||
287 -> 243 [ label="0" ];
|
||||
318 -> 244 [ label="0" ];
|
||||
287 -> 245 [ label="1" ];
|
||||
255 -> 246 [ label="1" ];
|
||||
255 -> 247 [ label="0" ];
|
||||
188 -> 248 [ label="0" ];
|
||||
213 -> 249 [ label="0" ];
|
||||
213 -> 250 [ label="1" ];
|
||||
331 -> 251 [ color="red" label="1" ];
|
||||
331 -> 252 [ label="0" ];
|
||||
192 -> 253 [ label="0" ];
|
||||
334 -> 254 [ label="0" ];
|
||||
147 -> 255 [ label="1" ];
|
||||
63 -> 256 [ label="1" ];
|
||||
61 -> 257 [ label="1" ];
|
||||
229 -> 258 [ label="0" ];
|
||||
183 -> 259 [ label="0" ];
|
||||
185 -> 260 [ label="0" ];
|
||||
448 -> 261 [ label="1" ];
|
||||
198 -> 262 [ label="0" ];
|
||||
199 -> 263 [ label="0" ];
|
||||
446 -> 264 [ label="1" ];
|
||||
350 -> 265 [ label="0" ];
|
||||
236 -> 266 [ label="0" ];
|
||||
233 -> 267 [ label="0" ];
|
||||
234 -> 268 [ label="0" ];
|
||||
235 -> 269 [ label="0" ];
|
||||
237 -> 270 [ label="0" ];
|
||||
173 -> 271 [ label="0" ];
|
||||
174 -> 272 [ label="0" ];
|
||||
239 -> 273 [ color="red" label="0" ];
|
||||
175 -> 274 [ label="0" ];
|
||||
293 -> 275 [ label="0" ];
|
||||
177 -> 276 [ label="0" ];
|
||||
209 -> 277 [ label="0" ];
|
||||
178 -> 278 [ label="0" ];
|
||||
295 -> 279 [ label="0" ];
|
||||
179 -> 280 [ label="0" ];
|
||||
242 -> 281 [ label="0" ];
|
||||
241 -> 282 [ label="0" ];
|
||||
210 -> 283 [ label="0" ];
|
||||
408 -> 284 [ label="1" ];
|
||||
211 -> 285 [ label="0" ];
|
||||
214 -> 286 [ label="0" ];
|
||||
220 -> 287 [ label="0" ];
|
||||
135 -> 288 [ label="0" ];
|
||||
134 -> 289 [ label="0" ];
|
||||
133 -> 290 [ label="0" ];
|
||||
132 -> 291 [ label="0" ];
|
||||
286 -> 292 [ label="0" ];
|
||||
369 -> 293 [ label="0" ];
|
||||
277 -> 294 [ label="0" ];
|
||||
369 -> 295 [ label="1" ];
|
||||
320 -> 296 [ label="1" ];
|
||||
341 -> 297 [ label="0" ];
|
||||
344 -> 298 [ label="0" ];
|
||||
249 -> 299 [ label="0" ];
|
||||
250 -> 300 [ label="0" ];
|
||||
137 -> 301 [ label="0" ];
|
||||
460 -> 302 [ label="1" ];
|
||||
399 -> 303 [ label="1" ];
|
||||
138 -> 304 [ label="0" ];
|
||||
474 -> 305 [ label="1" ];
|
||||
377 -> 306 [ label="1" ];
|
||||
379 -> 307 [ label="0" ];
|
||||
380 -> 308 [ label="0" ];
|
||||
327 -> 309 [ label="0" ];
|
||||
112 -> 310 [ label="1" ];
|
||||
117 -> 311 [ label="1" ];
|
||||
317 -> 312 [ label="1" ];
|
||||
261 -> 313 [ label="0" ];
|
||||
264 -> 314 [ label="0" ];
|
||||
153 -> 315 [ label="0" ];
|
||||
330 -> 316 [ label="0" ];
|
||||
243 -> 317 [ label="0" ];
|
||||
273 -> 318 [ label="1" ];
|
||||
267 -> 319 [ label="0" ];
|
||||
245 -> 320 [ label="0" ];
|
||||
266 -> 321 [ label="0" ];
|
||||
152 -> 322 [ label="0" ];
|
||||
268 -> 323 [ label="0" ];
|
||||
258 -> 324 [ label="0" ];
|
||||
401 -> 325 [ label="0" ];
|
||||
402 -> 326 [ label="0" ];
|
||||
403 -> 327 [ label="0" ];
|
||||
411 -> 328 [ label="0" ];
|
||||
55 -> 329 [ label="1" ];
|
||||
404 -> 330 [ label="0" ];
|
||||
169 -> 331 [ color="red" label="0" ];
|
||||
409 -> 332 [ label="0" ];
|
||||
289 -> 333 [ label="0" ];
|
||||
301 -> 334 [ label="0" ];
|
||||
97 -> 335 [ label="1" ];
|
||||
288 -> 336 [ label="0" ];
|
||||
259 -> 337 [ label="0" ];
|
||||
1 -> 338 [ label="1" ];
|
||||
466 -> 339 [ label="1" ];
|
||||
262 -> 340 [ label="0" ];
|
||||
278 -> 341 [ label="0" ];
|
||||
280 -> 342 [ label="0" ];
|
||||
299 -> 343 [ label="0" ];
|
||||
274 -> 344 [ label="0" ];
|
||||
26 -> 345 [ label="1" ];
|
||||
276 -> 346 [ label="0" ];
|
||||
300 -> 347 [ label="0" ];
|
||||
30 -> 348 [ label="1" ];
|
||||
302 -> 349 [ label="0" ];
|
||||
304 -> 350 [ label="0" ];
|
||||
305 -> 351 [ label="0" ];
|
||||
433 -> 352 [ label="0" ];
|
||||
432 -> 353 [ label="0" ];
|
||||
83 -> 354 [ label="1" ];
|
||||
125 -> 355 [ label="1" ];
|
||||
438 -> 356 [ color="red" label="0" ];
|
||||
80 -> 357 [ label="1" ];
|
||||
374 -> 358 [ label="1" ];
|
||||
126 -> 359 [ label="1" ];
|
||||
447 -> 360 [ label="0" ];
|
||||
321 -> 361 [ label="0" ];
|
||||
371 -> 362 [ label="1" ];
|
||||
440 -> 363 [ label="0" ];
|
||||
323 -> 364 [ label="0" ];
|
||||
319 -> 365 [ label="0" ];
|
||||
324 -> 366 [ label="0" ];
|
||||
321 -> 367 [ label="1" ];
|
||||
319 -> 368 [ label="1" ];
|
||||
378 -> 369 [ label="0" ];
|
||||
384 -> 370 [ label="1" ];
|
||||
382 -> 371 [ label="0" ];
|
||||
452 -> 372 [ label="0" ];
|
||||
384 -> 373 [ label="0" ];
|
||||
385 -> 374 [ label="0" ];
|
||||
329 -> 375 [ label="0" ];
|
||||
453 -> 376 [ label="0" ];
|
||||
460 -> 377 [ label="0" ];
|
||||
222 -> 378 [ label="1" ];
|
||||
19 -> 379 [ label="1" ];
|
||||
20 -> 380 [ label="1" ];
|
||||
312 -> 381 [ label="0" ];
|
||||
339 -> 382 [ label="1" ];
|
||||
296 -> 383 [ label="0" ];
|
||||
338 -> 384 [ label="0" ];
|
||||
339 -> 385 [ label="0" ];
|
||||
203 -> 386 [ label="1" ];
|
||||
343 -> 387 [ label="0" ];
|
||||
376 -> 388 [ label="1" ];
|
||||
251 -> 389 [ label="1" ];
|
||||
347 -> 390 [ label="0" ];
|
||||
317 -> 391 [ label="0" ];
|
||||
372 -> 392 [ label="1" ];
|
||||
320 -> 393 [ label="0" ];
|
||||
345 -> 394 [ label="0" ];
|
||||
132 -> 395 [ color="red" label="1" ];
|
||||
348 -> 396 [ label="0" ];
|
||||
133 -> 397 [ label="1" ];
|
||||
252 -> 398 [ label="1" ];
|
||||
474 -> 399 [ label="0" ];
|
||||
207 -> 400 [ label="1" ];
|
||||
208 -> 401 [ label="1" ];
|
||||
212 -> 402 [ label="1" ];
|
||||
415 -> 403 [ label="0" ];
|
||||
417 -> 404 [ label="0" ];
|
||||
398 -> 405 [ label="1" ];
|
||||
152 -> 406 [ label="1" ];
|
||||
153 -> 407 [ label="1" ];
|
||||
356 -> 408 [ label="0" ];
|
||||
360 -> 409 [ label="0" ];
|
||||
389 -> 410 [ label="1" ];
|
||||
363 -> 411 [ label="0" ];
|
||||
429 -> 412 [ label="1" ];
|
||||
428 -> 413 [ color="red" label="1" ];
|
||||
405 -> 414 [ label="0" ];
|
||||
13 -> 415 [ label="0" ];
|
||||
410 -> 416 [ label="0" ];
|
||||
14 -> 417 [ label="0" ];
|
||||
150 -> 418 [ label="1" ];
|
||||
148 -> 419 [ label="1" ];
|
||||
370 -> 420 [ label="0" ];
|
||||
371 -> 421 [ label="0" ];
|
||||
469 -> 422 [ label="0" ];
|
||||
373 -> 423 [ label="0" ];
|
||||
374 -> 424 [ label="0" ];
|
||||
375 -> 425 [ label="1" ];
|
||||
375 -> 426 [ label="0" ];
|
||||
467 -> 427 [ label="0" ];
|
||||
251 -> 428 [ color="red" label="0" ];
|
||||
252 -> 429 [ label="0" ];
|
||||
387 -> 430 [ label="1" ];
|
||||
390 -> 431 [ label="1" ];
|
||||
449 -> 432 [ label="0" ];
|
||||
450 -> 433 [ label="0" ];
|
||||
289 -> 434 [ label="1" ];
|
||||
288 -> 435 [ label="1" ];
|
||||
387 -> 436 [ label="0" ];
|
||||
357 -> 437 [ label="0" ];
|
||||
273 -> 438 [ color="red" label="0" ];
|
||||
390 -> 439 [ label="0" ];
|
||||
426 -> 440 [ label="1" ];
|
||||
423 -> 441 [ label="1" ];
|
||||
358 -> 442 [ label="0" ];
|
||||
354 -> 443 [ label="0" ];
|
||||
420 -> 444 [ label="1" ];
|
||||
362 -> 445 [ label="0" ];
|
||||
389 -> 446 [ label="0" ];
|
||||
425 -> 447 [ label="1" ];
|
||||
398 -> 448 [ label="0" ];
|
||||
36 -> 449 [ label="0" ];
|
||||
37 -> 450 [ label="0" ];
|
||||
239 -> 451 [ label="1" ];
|
||||
284 -> 452 [ label="0" ];
|
||||
284 -> 453 [ label="1" ];
|
||||
168 -> 454 [ label="1" ];
|
||||
167 -> 455 [ label="1" ];
|
||||
462 -> 456 [ label="1" ];
|
||||
461 -> 457 [ label="1" ];
|
||||
98 -> 458 [ label="1" ];
|
||||
413 -> 459 [ label="0" ];
|
||||
429 -> 460 [ label="0" ];
|
||||
452 -> 461 [ label="1" ];
|
||||
453 -> 462 [ label="1" ];
|
||||
381 -> 463 [ label="0" ];
|
||||
412 -> 464 [ label="0" ];
|
||||
383 -> 465 [ label="0" ];
|
||||
116 -> 466 [ label="1" ];
|
||||
393 -> 467 [ label="0" ];
|
||||
425 -> 468 [ label="0" ];
|
||||
391 -> 469 [ label="0" ];
|
||||
426 -> 470 [ label="0" ];
|
||||
345 -> 471 [ label="1" ];
|
||||
334 -> 472 [ label="1" ];
|
||||
348 -> 473 [ label="1" ];
|
||||
428 -> 474 [ label="0" ];
|
||||
350 -> 475 [ label="1" ];
|
||||
}
|
||||
339
PI5/generated/ej3_f1.dot
Normal file
339
PI5/generated/ej3_f1.dot
Normal file
@@ -0,0 +1,339 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(9,[0, 92],[1, 3, 0, 10, 5])" ];
|
||||
2 [ color="black" label="(9,[0, 97],[6, 0, 3, 10, 5])" ];
|
||||
3 [ color="black" label="(5,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
4 [ color="black" label="(9,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
5 [ color="black" label="(8,[0, 97],[6, 0, 8, 10, 0])" ];
|
||||
6 [ color="black" label="(8,[0, 89],[6, 0, 0, 10, 0])" ];
|
||||
7 [ color="black" label="(5,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
8 [ color="black" label="(9,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
9 [ color="black" label="(9,[5, 92],[6, 3, 0, 10, 5])" ];
|
||||
10 [ color="black" label="(7,[0, 100],[6, 3, 3, 10, 5])" ];
|
||||
11 [ color="black" label="(6,[0, 100],[6, 3, 8, 10, 0])" ];
|
||||
12 [ color="black" label="(7,[0, 97],[1, 0, 8, 10, 5])" ];
|
||||
13 [ color="black" label="(1,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
14 [ color="black" label="(9,[0, 89],[0, 3, 8, 0, 5])" ];
|
||||
15 [ color="black" label="(9,[0, 81],[0, 3, 0, 0, 5])" ];
|
||||
16 [ color="black" label="(10,[0, 92],[6, 3, 0, 10, 0])" ];
|
||||
17 [ color="black" label="(9,[0, 90],[6, 3, 3, 0, 5])" ];
|
||||
18 [ color="black" label="(7,[0, 99],[0, 3, 8, 10, 5])" ];
|
||||
19 [ color="black" label="(10,[5, 84],[0, 3, 8, 0, 5])" ];
|
||||
20 [ color="black" label="(7,[5, 97],[6, 0, 8, 10, 5])" ];
|
||||
21 [ color="black" label="(9,[0, 87],[1, 0, 8, 0, 5])" ];
|
||||
22 [ color="black" label="(9,[0, 79],[1, 0, 0, 0, 5])" ];
|
||||
23 [ color="black" label="(9,[0, 96],[0, 0, 8, 10, 5])" ];
|
||||
24 [ color="black" label="(9,[0, 88],[0, 0, 0, 10, 5])" ];
|
||||
25 [ color="black" label="(10,[0, 95],[1, 3, 8, 10, 0])" ];
|
||||
26 [ color="black" label="(10,[5, 91],[0, 0, 8, 10, 5])" ];
|
||||
27 [ color="black" label="(10,[5, 83],[0, 0, 0, 10, 5])" ];
|
||||
28 [ color="black" label="(10,[0, 87],[1, 3, 0, 10, 0])" ];
|
||||
29 [ color="black" label="(10,[0, 92],[6, 0, 3, 10, 0])" ];
|
||||
30 [ color="black" label="(9,[5, 87],[6, 0, 8, 0, 5])" ];
|
||||
31 [ color="black" label="(9,[5, 79],[6, 0, 0, 0, 5])" ];
|
||||
32 [ color="black" label="(10,[5, 95],[6, 3, 8, 10, 0])" ];
|
||||
33 [ color="black" label="(10,[5, 87],[6, 3, 0, 10, 0])" ];
|
||||
34 [ color="black" label="(8,[0, 97],[6, 3, 0, 10, 5])" ];
|
||||
35 [ color="black" label="(6,[0, 94],[0, 3, 3, 10, 5])" ];
|
||||
36 [ color="black" label="(8,[5, 94],[0, 3, 8, 10, 5])" ];
|
||||
37 [ color="black" label="(4,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
38 [ color="black" label="(8,[5, 86],[0, 3, 0, 10, 5])" ];
|
||||
39 [ color="black" label="(10,[0, 82],[1, 0, 8, 0, 0])" ];
|
||||
40 [ color="black" label="(10,[5, 76],[0, 0, 8, 0, 0])" ];
|
||||
41 [ color="black" label="(10,[0, 74],[1, 0, 0, 0, 0])" ];
|
||||
42 [ color="black" label="(10,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
43 [ color="black" label="(10,[5, 86],[0, 0, 8, 10, 0])" ];
|
||||
44 [ color="black" label="(10,[5, 78],[0, 0, 0, 10, 0])" ];
|
||||
45 [ color="black" label="(10,[0, 92],[1, 3, 0, 10, 5])" ];
|
||||
46 [ color="black" label="(4,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
47 [ color="black" label="(7,[0, 97],[6, 0, 8, 10, 0])" ];
|
||||
48 [ color="black" label="(10,[5, 82],[6, 0, 8, 0, 0])" ];
|
||||
49 [ color="black" label="(10,[5, 74],[6, 0, 0, 0, 0])" ];
|
||||
50 [ color="black" label="(8,[0, 97],[6, 0, 3, 10, 5])" ];
|
||||
51 [ color="black" label="(6,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
52 [ color="black" label="(8,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
53 [ color="black" label="(8,[5, 92],[6, 3, 0, 10, 5])" ];
|
||||
54 [ color="black" label="(8,[0, 97],[1, 0, 8, 10, 5])" ];
|
||||
55 [ color="black" label="(8,[0, 89],[1, 0, 0, 10, 5])" ];
|
||||
56 [ color="black" label="(10,[0, 86],[0, 0, 8, 0, 5])" ];
|
||||
57 [ color="black" label="(6,[0, 100],[6, 3, 3, 10, 5])" ];
|
||||
58 [ color="black" label="(10,[0, 78],[0, 0, 0, 0, 5])" ];
|
||||
59 [ color="black" label="(5,[0, 100],[6, 3, 8, 10, 0])" ];
|
||||
60 [ color="black" label="(0,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
61 [ color="black" label="(10,[0, 100],[6, 3, 3, 10, 5])" ];
|
||||
62 [ color="black" label="(9,[0, 100],[6, 3, 8, 10, 0])" ];
|
||||
63 [ color="black" label="(10,[0, 99],[0, 3, 8, 10, 5])" ];
|
||||
64 [ color="black" label="(10,[0, 91],[0, 3, 0, 10, 5])" ];
|
||||
65 [ color="black" label="(9,[5, 76],[0, 3, 0, 0, 5])" ];
|
||||
66 [ color="black" label="(9,[0, 87],[6, 0, 8, 0, 0])" ];
|
||||
67 [ color="black" label="(9,[5, 84],[0, 3, 8, 0, 5])" ];
|
||||
68 [ color="black" label="(6,[0, 99],[0, 3, 8, 10, 5])" ];
|
||||
69 [ color="black" label="(8,[0, 96],[0, 0, 8, 10, 5])" ];
|
||||
70 [ color="black" label="(8,[0, 88],[0, 0, 0, 10, 5])" ];
|
||||
71 [ color="black" label="(10,[0, 87],[1, 0, 8, 0, 5])" ];
|
||||
72 [ color="black" label="(10,[0, 79],[1, 0, 0, 0, 5])" ];
|
||||
73 [ color="black" label="(10,[5, 97],[6, 0, 8, 10, 5])" ];
|
||||
74 [ color="black" label="(10,[5, 89],[6, 0, 0, 10, 5])" ];
|
||||
75 [ color="black" label="(9,[5, 91],[0, 0, 8, 10, 5])" ];
|
||||
76 [ color="black" label="(9,[5, 83],[0, 0, 0, 10, 5])" ];
|
||||
77 [ color="black" label="(10,[5, 90],[6, 3, 8, 0, 5])" ];
|
||||
78 [ color="black" label="(10,[5, 82],[6, 3, 0, 0, 5])" ];
|
||||
79 [ color="black" label="(2,[2, 100],[6, 0, 8, 10, 5])" ];
|
||||
80 [ color="black" label="(10,[0, 84],[0, 3, 8, 0, 0])" ];
|
||||
81 [ color="black" label="(10,[0, 76],[0, 3, 0, 0, 0])" ];
|
||||
82 [ color="black" label="(9,[0, 87],[6, 3, 0, 0, 5])" ];
|
||||
83 [ color="black" label="(1,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
84 [ color="black" label="(7,[5, 94],[0, 3, 8, 10, 5])" ];
|
||||
85 [ color="black" label="(10,[0, 91],[0, 0, 8, 10, 0])" ];
|
||||
86 [ color="black" label="(10,[0, 83],[0, 0, 0, 10, 0])" ];
|
||||
87 [ color="black" label="(7,[0, 97],[6, 0, 3, 10, 5])" ];
|
||||
88 [ color="black" label="(3,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
89 [ color="black" label="(7,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
90 [ color="black" label="(7,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
91 [ color="black" label="(8,[0, 100],[6, 3, 8, 10, 0])" ];
|
||||
92 [ color="black" label="(8,[0, 92],[6, 3, 0, 10, 0])" ];
|
||||
93 [ color="black" label="(9,[0, 97],[1, 0, 8, 10, 5])" ];
|
||||
94 [ color="black" label="(9,[0, 89],[1, 0, 0, 10, 5])" ];
|
||||
95 [ color="black" label="(9,[0, 86],[0, 0, 8, 0, 5])" ];
|
||||
96 [ color="black" label="(9,[0, 78],[0, 0, 0, 0, 5])" ];
|
||||
97 [ color="black" label="(5,[0, 100],[6, 3, 3, 10, 5])" ];
|
||||
98 [ color="black" label="(9,[0, 100],[6, 3, 3, 10, 5])" ];
|
||||
99 [ color="black" label="(9,[0, 99],[0, 3, 8, 10, 5])" ];
|
||||
100 [ color="black" label="(9,[0, 91],[0, 3, 0, 10, 5])" ];
|
||||
101 [ color="black" label="(9,[0, 87],[6, 0, 3, 0, 5])" ];
|
||||
102 [ color="black" label="(9,[0, 82],[1, 3, 0, 0, 5])" ];
|
||||
103 [ color="black" label="(10,[5, 81],[0, 0, 8, 0, 5])" ];
|
||||
104 [ color="black" label="(9,[0, 90],[1, 3, 8, 0, 5])" ];
|
||||
105 [ color="black" label="(7,[0, 96],[0, 0, 8, 10, 5])" ];
|
||||
106 [ color="black" label="(9,[5, 97],[6, 0, 8, 10, 5])" ];
|
||||
107 [ color="black" label="(9,[5, 89],[6, 0, 0, 10, 5])" ];
|
||||
108 [ color="black" label="(8,[0, 94],[6, 0, 0, 10, 5])" ];
|
||||
109 [ color="black" label="(8,[5, 91],[0, 0, 8, 10, 5])" ];
|
||||
110 [ color="black" label="(8,[5, 83],[0, 0, 0, 10, 5])" ];
|
||||
111 [ color="black" label="(10,[0, 92],[1, 0, 8, 10, 0])" ];
|
||||
112 [ color="black" label="(10,[0, 84],[1, 0, 0, 10, 0])" ];
|
||||
113 [ color="black" label="(9,[5, 90],[6, 3, 8, 0, 5])" ];
|
||||
114 [ color="black" label="(9,[5, 82],[6, 3, 0, 0, 5])" ];
|
||||
115 [ color="black" label="(10,[0, 95],[6, 3, 3, 10, 0])" ];
|
||||
116 [ color="black" label="(10,[0, 97],[6, 3, 0, 10, 5])" ];
|
||||
117 [ color="black" label="(10,[5, 79],[0, 3, 8, 0, 0])" ];
|
||||
118 [ color="black" label="(4,[0, 100],[6, 3, 3, 10, 5])" ];
|
||||
119 [ color="black" label="(10,[5, 94],[0, 3, 8, 10, 5])" ];
|
||||
120 [ color="black" label="(2,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
121 [ color="black" label="(10,[5, 86],[0, 3, 0, 10, 5])" ];
|
||||
122 [ color="black" label="(10,[0, 85],[1, 3, 8, 0, 0])" ];
|
||||
123 [ color="black" label="(6,[5, 94],[0, 3, 8, 10, 5])" ];
|
||||
124 [ color="black" label="(10,[0, 77],[1, 3, 0, 0, 0])" ];
|
||||
125 [ color="black" label="(10,[5, 92],[6, 0, 8, 10, 0])" ];
|
||||
126 [ color="black" label="(10,[5, 84],[6, 0, 0, 10, 0])" ];
|
||||
127 [ color="black" label="(6,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
128 [ color="black" label="(9,[0, 97],[6, 0, 8, 10, 0])" ];
|
||||
129 [ color="black" label="(10,[0, 97],[6, 0, 3, 10, 5])" ];
|
||||
130 [ color="black" label="(10,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
131 [ color="black" label="(10,[5, 92],[6, 3, 0, 10, 5])" ];
|
||||
132 [ color="black" label="(8,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
133 [ color="black" label="(8,[0, 92],[1, 3, 0, 10, 5])" ];
|
||||
134 [ color="black" label="(10,[0, 97],[1, 0, 8, 10, 5])" ];
|
||||
135 [ color="black" label="(10,[5, 85],[6, 3, 8, 0, 0])" ];
|
||||
136 [ color="black" label="(10,[0, 89],[1, 0, 0, 10, 5])" ];
|
||||
137 [ color="black" label="(10,[5, 77],[6, 3, 0, 0, 0])" ];
|
||||
138 [ color="black" label="(8,[0, 100],[6, 3, 3, 10, 5])" ];
|
||||
139 [ color="black" label="(7,[0, 100],[6, 3, 8, 10, 0])" ];
|
||||
140 [ color="black" label="(2,[5, 100],[6, 3, 8, 10, 5])" ];
|
||||
141 [ color="black" label="(10,[0, 89],[0, 3, 8, 0, 5])" ];
|
||||
142 [ color="black" label="(10,[0, 81],[0, 3, 0, 0, 5])" ];
|
||||
143 [ color="black" label="(9,[0, 90],[6, 3, 8, 0, 0])" ];
|
||||
144 [ color="black" label="(8,[0, 99],[0, 3, 8, 10, 5])" ];
|
||||
145 [ color="black" label="(8,[0, 91],[0, 3, 0, 10, 5])" ];
|
||||
146 [ color="black" label="(10,[5, 89],[0, 3, 8, 10, 0])" ];
|
||||
147 [ color="black" label="(8,[5, 97],[6, 0, 8, 10, 5])" ];
|
||||
148 [ color="black" label="(8,[5, 89],[6, 0, 0, 10, 5])" ];
|
||||
149 [ color="black" label="(10,[5, 81],[0, 3, 0, 10, 0])" ];
|
||||
150 [ color="black" label="(10,[0, 90],[1, 3, 8, 0, 5])" ];
|
||||
151 [ color="black" label="(9,[5, 81],[0, 0, 8, 0, 5])" ];
|
||||
152 [ color="black" label="(10,[0, 82],[1, 3, 0, 0, 5])" ];
|
||||
153 [ color="black" label="(9,[5, 73],[0, 0, 0, 0, 5])" ];
|
||||
154 [ color="black" label="(10,[0, 96],[0, 0, 8, 10, 5])" ];
|
||||
155 [ color="black" label="(10,[0, 88],[0, 0, 0, 10, 5])" ];
|
||||
156 [ color="black" label="(4,[0, 100],[6, 3, 8, 5, 5])" ];
|
||||
157 [ color="black" label="(10,[5, 87],[6, 0, 8, 0, 5])" ];
|
||||
158 [ color="black" label="(10,[5, 79],[6, 0, 0, 0, 5])" ];
|
||||
159 [ color="black" label="(7,[5, 91],[0, 0, 8, 10, 5])" ];
|
||||
160 [ color="black" label="(10,[0, 81],[0, 0, 8, 0, 0])" ];
|
||||
161 [ color="black" label="(10,[0, 73],[0, 0, 0, 0, 0])" ];
|
||||
162 [ color="black" label="(9,[0, 97],[6, 3, 0, 10, 5])" ];
|
||||
163 [ color="black" label="(10,[0, 94],[0, 3, 8, 10, 0])" ];
|
||||
164 [ color="black" label="(10,[0, 86],[0, 3, 0, 10, 0])" ];
|
||||
165 [ color="black" label="(3,[0, 100],[6, 3, 3, 10, 5])" ];
|
||||
166 [ color="black" label="(6,[0, 94],[0, 3, 8, 10, 0])" ];
|
||||
167 [ color="black" label="(9,[5, 86],[0, 3, 0, 10, 5])" ];
|
||||
168 [ color="black" label="(9,[5, 94],[0, 3, 8, 10, 5])" ];
|
||||
169 [ color="black" label="(3,[0, 100],[1, 3, 8, 10, 5])" ];
|
||||
133 -> 1 [ label="0" ];
|
||||
50 -> 2 [ label="0" ];
|
||||
46 -> 3 [ label="0" ];
|
||||
132 -> 4 [ label="0" ];
|
||||
47 -> 5 [ label="0" ];
|
||||
47 -> 6 [ label="8" ];
|
||||
37 -> 7 [ color="red" label="0" ];
|
||||
52 -> 8 [ label="0" ];
|
||||
53 -> 9 [ label="0" ];
|
||||
57 -> 10 [ label="0" ];
|
||||
59 -> 11 [ label="0" ];
|
||||
51 -> 12 [ label="3" ];
|
||||
60 -> 13 [ label="0" ];
|
||||
144 -> 14 [ label="10" ];
|
||||
145 -> 15 [ label="10" ];
|
||||
162 -> 16 [ label="5" ];
|
||||
138 -> 17 [ label="10" ];
|
||||
68 -> 18 [ label="0" ];
|
||||
67 -> 19 [ label="0" ];
|
||||
127 -> 20 [ label="3" ];
|
||||
54 -> 21 [ label="10" ];
|
||||
55 -> 22 [ label="10" ];
|
||||
69 -> 23 [ label="0" ];
|
||||
70 -> 24 [ label="0" ];
|
||||
4 -> 25 [ label="5" ];
|
||||
75 -> 26 [ label="0" ];
|
||||
76 -> 27 [ label="0" ];
|
||||
1 -> 28 [ label="5" ];
|
||||
2 -> 29 [ label="5" ];
|
||||
147 -> 30 [ label="10" ];
|
||||
148 -> 31 [ label="10" ];
|
||||
8 -> 32 [ label="5" ];
|
||||
9 -> 33 [ label="5" ];
|
||||
10 -> 34 [ label="3" ];
|
||||
97 -> 35 [ label="6" ];
|
||||
84 -> 36 [ label="0" ];
|
||||
169 -> 37 [ color="red" label="0" ];
|
||||
84 -> 38 [ label="8" ];
|
||||
21 -> 39 [ label="5" ];
|
||||
151 -> 40 [ label="5" ];
|
||||
22 -> 41 [ label="5" ];
|
||||
4 -> 42 [ label="0" ];
|
||||
75 -> 43 [ label="5" ];
|
||||
76 -> 44 [ label="5" ];
|
||||
1 -> 45 [ label="0" ];
|
||||
88 -> 46 [ label="0" ];
|
||||
11 -> 47 [ label="3" ];
|
||||
30 -> 48 [ label="5" ];
|
||||
31 -> 49 [ label="5" ];
|
||||
87 -> 50 [ label="0" ];
|
||||
7 -> 51 [ label="0" ];
|
||||
89 -> 52 [ label="0" ];
|
||||
89 -> 53 [ label="8" ];
|
||||
12 -> 54 [ label="0" ];
|
||||
12 -> 55 [ label="8" ];
|
||||
95 -> 56 [ label="0" ];
|
||||
97 -> 57 [ label="0" ];
|
||||
96 -> 58 [ label="0" ];
|
||||
46 -> 59 [ label="5" ];
|
||||
98 -> 61 [ label="0" ];
|
||||
91 -> 62 [ label="0" ];
|
||||
99 -> 63 [ label="0" ];
|
||||
100 -> 64 [ label="0" ];
|
||||
38 -> 65 [ label="10" ];
|
||||
5 -> 66 [ label="10" ];
|
||||
36 -> 67 [ label="10" ];
|
||||
7 -> 68 [ color="red" label="1" ];
|
||||
105 -> 69 [ label="0" ];
|
||||
105 -> 70 [ color="red" label="8" ];
|
||||
21 -> 71 [ label="0" ];
|
||||
22 -> 72 [ label="0" ];
|
||||
106 -> 73 [ label="0" ];
|
||||
107 -> 74 [ label="0" ];
|
||||
109 -> 75 [ label="0" ];
|
||||
110 -> 76 [ label="0" ];
|
||||
113 -> 77 [ label="0" ];
|
||||
114 -> 78 [ label="0" ];
|
||||
13 -> 79 [ label="3" ];
|
||||
14 -> 80 [ label="5" ];
|
||||
15 -> 81 [ label="5" ];
|
||||
34 -> 82 [ label="10" ];
|
||||
60 -> 83 [ color="red" label="5" ];
|
||||
123 -> 84 [ label="0" ];
|
||||
23 -> 85 [ label="5" ];
|
||||
24 -> 86 [ label="5" ];
|
||||
57 -> 87 [ label="3" ];
|
||||
140 -> 88 [ label="0" ];
|
||||
127 -> 89 [ label="0" ];
|
||||
51 -> 90 [ label="0" ];
|
||||
139 -> 91 [ label="0" ];
|
||||
139 -> 92 [ label="8" ];
|
||||
54 -> 93 [ label="0" ];
|
||||
55 -> 94 [ label="0" ];
|
||||
69 -> 95 [ label="10" ];
|
||||
70 -> 96 [ color="red" label="10" ];
|
||||
118 -> 97 [ label="0" ];
|
||||
138 -> 98 [ label="0" ];
|
||||
144 -> 99 [ label="0" ];
|
||||
145 -> 100 [ label="0" ];
|
||||
50 -> 101 [ label="10" ];
|
||||
133 -> 102 [ label="10" ];
|
||||
151 -> 103 [ label="0" ];
|
||||
132 -> 104 [ label="10" ];
|
||||
68 -> 105 [ color="red" label="3" ];
|
||||
147 -> 106 [ label="0" ];
|
||||
148 -> 107 [ label="0" ];
|
||||
87 -> 108 [ label="3" ];
|
||||
159 -> 109 [ label="0" ];
|
||||
159 -> 110 [ label="8" ];
|
||||
93 -> 111 [ label="5" ];
|
||||
94 -> 112 [ label="5" ];
|
||||
52 -> 113 [ label="10" ];
|
||||
53 -> 114 [ label="10" ];
|
||||
98 -> 115 [ label="5" ];
|
||||
162 -> 116 [ label="0" ];
|
||||
67 -> 117 [ label="5" ];
|
||||
165 -> 118 [ label="0" ];
|
||||
168 -> 119 [ label="0" ];
|
||||
83 -> 120 [ color="red" label="0" ];
|
||||
167 -> 121 [ label="0" ];
|
||||
104 -> 122 [ label="5" ];
|
||||
3 -> 123 [ label="6" ];
|
||||
102 -> 124 [ label="5" ];
|
||||
106 -> 125 [ label="5" ];
|
||||
107 -> 126 [ label="5" ];
|
||||
3 -> 127 [ label="0" ];
|
||||
5 -> 128 [ label="0" ];
|
||||
2 -> 129 [ label="0" ];
|
||||
8 -> 130 [ label="0" ];
|
||||
9 -> 131 [ label="0" ];
|
||||
90 -> 132 [ label="0" ];
|
||||
90 -> 133 [ label="8" ];
|
||||
93 -> 134 [ label="0" ];
|
||||
113 -> 135 [ label="5" ];
|
||||
94 -> 136 [ label="0" ];
|
||||
114 -> 137 [ label="5" ];
|
||||
10 -> 138 [ label="0" ];
|
||||
11 -> 139 [ label="0" ];
|
||||
13 -> 140 [ label="0" ];
|
||||
14 -> 141 [ label="0" ];
|
||||
15 -> 142 [ label="0" ];
|
||||
91 -> 143 [ label="10" ];
|
||||
18 -> 144 [ label="0" ];
|
||||
18 -> 145 [ label="8" ];
|
||||
168 -> 146 [ label="5" ];
|
||||
20 -> 147 [ label="0" ];
|
||||
20 -> 148 [ label="8" ];
|
||||
167 -> 149 [ label="5" ];
|
||||
104 -> 150 [ label="0" ];
|
||||
109 -> 151 [ label="10" ];
|
||||
102 -> 152 [ label="0" ];
|
||||
110 -> 153 [ label="10" ];
|
||||
23 -> 154 [ label="0" ];
|
||||
24 -> 155 [ label="0" ];
|
||||
88 -> 156 [ label="5" ];
|
||||
30 -> 157 [ label="0" ];
|
||||
31 -> 158 [ label="0" ];
|
||||
123 -> 159 [ label="3" ];
|
||||
95 -> 160 [ label="5" ];
|
||||
96 -> 161 [ color="red" label="5" ];
|
||||
34 -> 162 [ label="0" ];
|
||||
99 -> 163 [ label="5" ];
|
||||
100 -> 164 [ label="5" ];
|
||||
140 -> 165 [ label="5" ];
|
||||
59 -> 166 [ label="6" ];
|
||||
38 -> 167 [ label="0" ];
|
||||
36 -> 168 [ label="0" ];
|
||||
120 -> 169 [ color="red" label="0" ];
|
||||
}
|
||||
4967
PI5/generated/ej3_f2.dot
Normal file
4967
PI5/generated/ej3_f2.dot
Normal file
File diff suppressed because it is too large
Load Diff
460313
PI5/generated/ej3_f3.dot
Normal file
460313
PI5/generated/ej3_f3.dot
Normal file
File diff suppressed because it is too large
Load Diff
23
PI5/generated/ej4_f1.dot
Normal file
23
PI5/generated/ej4_f1.dot
Normal file
@@ -0,0 +1,23 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(4,[4, 5],6)" ];
|
||||
2 [ color="black" label="(1,[1, 2, 3, 4, 5],0)" ];
|
||||
3 [ color="black" label="(1,[0, 2, 3, 4, 5],1)" ];
|
||||
4 [ color="black" label="(5,[5],4)" ];
|
||||
5 [ color="black" label="(1,[0, 1, 3, 4, 5],2)" ];
|
||||
6 [ color="black" label="(0,[0, 1, 2, 3, 4, 5],6)" ];
|
||||
7 [ color="black" label="(3,[2, 4, 5],0)" ];
|
||||
8 [ color="black" label="(2,[1, 3, 4, 5],6)" ];
|
||||
9 [ color="black" label="(3,[0, 4, 5],2)" ];
|
||||
10 [ color="black" label="(6,[],6)" ];
|
||||
11 [ color="black" label="(2,[0, 2, 4, 5],6)" ];
|
||||
7 -> 1 [ color="red" label="2" ];
|
||||
6 -> 2 [ label="0" ];
|
||||
6 -> 3 [ color="red" label="1" ];
|
||||
1 -> 4 [ color="red" label="4" ];
|
||||
6 -> 5 [ label="2" ];
|
||||
11 -> 7 [ color="red" label="0" ];
|
||||
2 -> 8 [ label="2" ];
|
||||
11 -> 9 [ label="2" ];
|
||||
4 -> 10 [ color="red" label="5" ];
|
||||
3 -> 11 [ color="red" label="3" ];
|
||||
}
|
||||
47
PI5/generated/ej4_f2.dot
Normal file
47
PI5/generated/ej4_f2.dot
Normal file
@@ -0,0 +1,47 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(4,[0, 2, 4, 5],8)" ];
|
||||
2 [ color="black" label="(7,[5],0)" ];
|
||||
3 [ color="black" label="(1,[1, 2, 3, 4, 5, 6, 7],0)" ];
|
||||
4 [ color="black" label="(6,[1, 7],8)" ];
|
||||
5 [ color="black" label="(1,[0, 2, 3, 4, 5, 6, 7],1)" ];
|
||||
6 [ color="black" label="(1,[0, 1, 3, 4, 5, 6, 7],2)" ];
|
||||
7 [ color="black" label="(6,[0, 5],8)" ];
|
||||
8 [ color="black" label="(1,[0, 1, 2, 4, 5, 6, 7],3)" ];
|
||||
9 [ color="black" label="(0,[0, 1, 2, 3, 4, 5, 6, 7],8)" ];
|
||||
10 [ color="black" label="(2,[1, 3, 4, 5, 6, 7],8)" ];
|
||||
11 [ color="black" label="(3,[1, 2, 4, 5, 7],0)" ];
|
||||
12 [ color="black" label="(8,[],8)" ];
|
||||
13 [ color="black" label="(2,[0, 2, 4, 5, 6, 7],8)" ];
|
||||
14 [ color="black" label="(3,[0, 2, 4, 5, 7],1)" ];
|
||||
15 [ color="black" label="(2,[0, 1, 3, 5, 6, 7],8)" ];
|
||||
16 [ color="black" label="(3,[0, 1, 4, 5, 7],2)" ];
|
||||
17 [ color="black" label="(2,[0, 2, 3, 4, 5, 7],8)" ];
|
||||
18 [ color="black" label="(2,[0, 1, 2, 4, 5, 7],8)" ];
|
||||
19 [ color="black" label="(5,[1, 5, 7],0)" ];
|
||||
20 [ color="black" label="(5,[0, 5, 7],1)" ];
|
||||
21 [ color="black" label="(4,[1, 4, 5, 7],8)" ];
|
||||
22 [ color="black" label="(4,[1, 2, 4, 7],8)" ];
|
||||
23 [ color="black" label="(4,[0, 1, 5, 7],8)" ];
|
||||
14 -> 1 [ label="7" ];
|
||||
7 -> 2 [ color="red" label="0" ];
|
||||
9 -> 3 [ label="0" ];
|
||||
19 -> 4 [ label="5" ];
|
||||
9 -> 5 [ label="1" ];
|
||||
9 -> 6 [ label="2" ];
|
||||
20 -> 7 [ color="red" label="7" ];
|
||||
9 -> 8 [ color="red" label="3" ];
|
||||
6 -> 10 [ label="0" ];
|
||||
18 -> 11 [ label="0" ];
|
||||
2 -> 12 [ color="red" label="5" ];
|
||||
8 -> 13 [ label="1" ];
|
||||
18 -> 14 [ label="1" ];
|
||||
6 -> 15 [ label="4" ];
|
||||
18 -> 16 [ color="red" label="2" ];
|
||||
5 -> 17 [ label="6" ];
|
||||
8 -> 18 [ color="red" label="6" ];
|
||||
23 -> 19 [ label="0" ];
|
||||
23 -> 20 [ color="red" label="1" ];
|
||||
16 -> 21 [ label="0" ];
|
||||
11 -> 22 [ label="5" ];
|
||||
16 -> 23 [ color="red" label="4" ];
|
||||
}
|
||||
73
PI5/generated/ej4_f3.dot
Normal file
73
PI5/generated/ej4_f3.dot
Normal file
@@ -0,0 +1,73 @@
|
||||
strict digraph G {
|
||||
1 [ color="black" label="(3,[0, 2, 4, 5, 7, 8, 9],1)" ];
|
||||
2 [ color="black" label="(2,[0, 2, 4, 5, 6, 7, 8, 9],10)" ];
|
||||
3 [ color="black" label="(2,[0, 1, 3, 5, 6, 7, 8, 9],10)" ];
|
||||
4 [ color="black" label="(9,[8],7)" ];
|
||||
5 [ color="black" label="(2,[0, 2, 3, 4, 5, 6, 7, 8],10)" ];
|
||||
6 [ color="black" label="(5,[1, 4, 7, 8, 9],2)" ];
|
||||
7 [ color="black" label="(5,[1, 2, 7, 8, 9],4)" ];
|
||||
8 [ color="black" label="(4,[1, 2, 4, 7, 8, 9],10)" ];
|
||||
9 [ color="black" label="(7,[4, 8, 9],2)" ];
|
||||
10 [ color="black" label="(10,[],10)" ];
|
||||
11 [ color="black" label="(1,[0, 2, 3, 4, 5, 6, 7, 8, 9],1)" ];
|
||||
12 [ color="black" label="(7,[4, 7, 8],2)" ];
|
||||
13 [ color="black" label="(6,[1, 7, 8, 9],10)" ];
|
||||
14 [ color="black" label="(7,[2, 8, 9],4)" ];
|
||||
15 [ color="black" label="(6,[2, 4, 8, 9],10)" ];
|
||||
16 [ color="black" label="(1,[0, 1, 2, 4, 5, 6, 7, 8, 9],3)" ];
|
||||
17 [ color="black" label="(7,[2, 7, 8],4)" ];
|
||||
18 [ color="black" label="(6,[2, 4, 7, 8],10)" ];
|
||||
19 [ color="black" label="(3,[1, 2, 4, 5, 7, 8, 9],0)" ];
|
||||
20 [ color="black" label="(8,[8, 9],10)" ];
|
||||
21 [ color="black" label="(3,[0, 1, 4, 5, 7, 8, 9],2)" ];
|
||||
22 [ color="black" label="(8,[7, 8],10)" ];
|
||||
23 [ color="black" label="(2,[1, 2, 3, 4, 6, 7, 8, 9],10)" ];
|
||||
24 [ color="black" label="(2,[0, 2, 3, 4, 5, 7, 8, 9],10)" ];
|
||||
25 [ color="black" label="(3,[0, 1, 2, 5, 7, 8, 9],4)" ];
|
||||
26 [ color="black" label="(2,[0, 1, 2, 4, 5, 7, 8, 9],10)" ];
|
||||
27 [ color="black" label="(5,[2, 4, 7, 8, 9],1)" ];
|
||||
28 [ color="black" label="(9,[9],8)" ];
|
||||
29 [ color="black" label="(2,[0, 1, 2, 4, 5, 6, 7, 9],10)" ];
|
||||
30 [ color="black" label="(4,[0, 1, 5, 7, 8, 9],10)" ];
|
||||
31 [ color="black" label="(4,[0, 2, 4, 5, 8, 9],10)" ];
|
||||
32 [ color="black" label="(1,[1, 2, 3, 4, 5, 6, 7, 8, 9],0)" ];
|
||||
33 [ color="black" label="(4,[0, 2, 4, 5, 7, 8],10)" ];
|
||||
34 [ color="black" label="(1,[0, 1, 3, 4, 5, 6, 7, 8, 9],2)" ];
|
||||
35 [ color="black" label="(1,[0, 1, 2, 3, 5, 6, 7, 8, 9],4)" ];
|
||||
36 [ color="black" label="(0,[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],10)" ];
|
||||
26 -> 1 [ label="1" ];
|
||||
11 -> 2 [ label="3" ];
|
||||
34 -> 3 [ label="4" ];
|
||||
22 -> 4 [ label="7" ];
|
||||
11 -> 5 [ label="9" ];
|
||||
8 -> 6 [ label="2" ];
|
||||
8 -> 7 [ label="4" ];
|
||||
19 -> 8 [ color="red" label="5" ];
|
||||
15 -> 9 [ color="red" label="2" ];
|
||||
28 -> 10 [ color="red" label="9" ];
|
||||
36 -> 11 [ label="1" ];
|
||||
18 -> 12 [ label="2" ];
|
||||
6 -> 13 [ label="4" ];
|
||||
15 -> 14 [ label="4" ];
|
||||
27 -> 15 [ color="red" label="7" ];
|
||||
36 -> 16 [ color="red" label="3" ];
|
||||
18 -> 17 [ label="4" ];
|
||||
27 -> 18 [ label="9" ];
|
||||
26 -> 19 [ color="red" label="0" ];
|
||||
9 -> 20 [ color="red" label="4" ];
|
||||
26 -> 21 [ label="2" ];
|
||||
12 -> 22 [ label="4" ];
|
||||
32 -> 23 [ label="5" ];
|
||||
11 -> 24 [ label="6" ];
|
||||
26 -> 25 [ label="4" ];
|
||||
16 -> 26 [ color="red" label="6" ];
|
||||
8 -> 27 [ color="red" label="1" ];
|
||||
20 -> 28 [ color="red" label="8" ];
|
||||
16 -> 29 [ label="8" ];
|
||||
21 -> 30 [ label="4" ];
|
||||
1 -> 31 [ label="7" ];
|
||||
36 -> 32 [ label="0" ];
|
||||
1 -> 33 [ label="9" ];
|
||||
36 -> 34 [ label="2" ];
|
||||
36 -> 35 [ label="4" ];
|
||||
}
|
||||
Reference in New Issue
Block a user